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1.0 Abstract 

Transportation is a complex, technology-intensive socio-technical system, which needs 
to be tackled in an integrated manner. Also, transportation as a sector is a significant 
component of any national economy, and has far-reaching implications both with regard 
to socio-economic and environmental well-being of the society and within the context of 
sustainability science. For this reason, sustainable transportation is not only an 
important field of research within the academia but also an indispensable constituent of 
a sustainable economy. Therefore, investigating the path to sustainable transportation 
requires a holistic approach, encompassing the three dimensions of sustainability, i.e. 
environment, society, and economy. There are several proposals as to how to transition 
to a more sustainable transportation sector globally, and one of the most promising 
options is the electrification of vehicles. Hence, it is crucial to look at the electrification of 
transportation from different angles, and scrutinize different aspects to this matter.  
 
This project developed several integrated sustainability assessment models that include 
the socio-economic as well as the environmental implications of an electrified 
transportation sector. These developed models covered a wide variety of means and 
aspects of an electrified transportation such as passenger vehicles, electric vehicle 
(EVs) market penetration, electric buses and long-haul trucks, vehicle to grid (V2G) 
technology that included delivery trucks, and the potential use of electric vehicles as a 
source of energy both for the grid and homes, i.e. vehicle to home technology (V2H). In 
the modeling, consideration was applied to stochastic costs, electricity mix 
sustainability, and life cycle impacts such as environmental, e.g. life cycle greenhouse 
gas emissions, social, e.g. life cycle health costs, and economic, e.g. life cycle costs. In-
depth comparison between electric vehicles and other alternative fuel vehicles (AFVs) 
(incl. hybrid-electric, plug-in hybrid-electric, liquefied-natural gas, compressed-natural 
gas, biodiesel-powered vehicles) was carried out to investigate the major advantages 
and/or disadvantages of electrifying different means and types of transportation, e.g. 
passenger vehicles, transit buses, and long-haul trucks. 
 
The final output was a dynamic simulation models of EV adoption that included a 
comprehensive cradle-to-grave life cycle assessment including uncertainties that 
capture the social, economic, and environmental impacts of EVs. Some of the critical 
findings of this project are as follows: Environmental benefits of EVs highly depend on 
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the electricity generation mix; battery-electric transit and school buses have larger 
battery capacity than passenger vehicles, making them more feasible candidates for 
V2G service; there is an enormous potential to neutralize operation related emissions 
by the use of V2G service for school buses and delivery trucks; battery-electric Class 8 
trucks yield important improvements in terms of life-cycle costs, life-cycle emissions, 
and life-cycle air pollution externalities; buildings and EVs can be considered together in 
term of energy supply and consumption; and V2H technology can drastically reduce the 
cost of electricity through storing electricity in the battery during off-peak hours and 
deplete it during on-peak hours.  
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2.0 Introduction 

Transportation sector is an ever-growing, sophisticated socio-economic terrain that 
comprises of complex and dynamic interactions between several stakeholders, e.g. 
consumers, technology providers, and energy/fuel providers, as well as different 
components such as mobility, e.g. passenger and sport-utility vehicles and public 
transportation, and logistics, e.g. delivery and long-haul trucks. Hence, the state of 
transportation sector requires a holistic approach that will enable the relevant 
stakeholders to tackle with sustainability-related problems emerging from the 
(mal)functioning of transportation sector in an integrated fashion. This is particularly 
important when considering the implications of transportation sector with regard to 
environmental quality and socio-economic well-being of the society. For example, 
transportation sector consumes 67% of the U.S. total petroleum production, and 
accounts for 28% of the U.S. total energy consumption and greenhouse gas (GHG) 
emissions [1]. Additionally, with their relatively lower fuel economy medium-duty 
vehicles, i.e. delivery trucks (pickup trucks or step vans), contribute considerably to the 
energy consumption by the transportation sector [2]. Similarly, Class 8 heavy-duty 
vehicles were responsible for the consumption of 29 billion gallons of fuel (over 15% of 
the total fuel consumption by highway vehicles) in 2013 despite being only 
approximately 1% of U.S. on-road vehicles [3]. On the other hand, transit buses helped 
save 4 billion gallons of gasoline-equivalents of fuel reducing the vehicle-miles travelled 
by private vehicles despite, of course, also contributing to fuel consumption and GHG 
and other air pollutant emissions [4]. Doubtlessly, any improvements made in the 
transportation sector leads to important increase in environmental and socio-economic 
standards experienced by the society. There are several proposals as to how to bring 
about such improvements so as to be able to transition to a more sustainable 
transportation sector globally, and one of the most promising options is the 
electrification of vehicles. 
 
Not only does electrifying the transportation sector have a potential to pave the way for 
energy independence, ensure energy security, and substantially improve socio-
ecological quality through lesser externality costs to both the environment and the 
society but also it can provide a source of energy both for the main grid, i.e. Vehicle to 
Grid (V2G) technology, and residences, i.e. Vehicle to Home (V2H) technology, [5,6]. It 
is estimated that the total power capacity of U.S. light-duty vehicles is significantly 
greater (about 24 times) than the whole utility system [7]. Hence, understanding the 
implications of electrifying the transportation sector requires a holistic view on and an 
integrated approach to various components pertaining to the overall system. To be able 
to grasp a bigger picture, several questions asked include, but not limited to, the 
followings: 
 

 What are the life cycle impacts of EVs under techno-economic uncertainties? 
And how do EVs perform compared against each other (e.g. passenger EVs, 
heavy-duty EVs etc.) as well as conventional (internal combustion engine) 
vehicles (ICVs)? 



 15

 What is the advantages and/or disadvantage of EVs compared to ICVs, taking 
into account the dynamism of the U.S. transportation system arising from the 
complex interactions among the system variables? 

 How do differences in regional driving patterns and electricity grid mixes, and 
uncertainties inherent to the overall system affect the sustainability performance 
of vehicle technologies? 

 Which states are better-off with the implementation of the EV technologies? 

 How likely is the market penetration of EVs going to look like under the 
circumstances where different states have different power mixes and there are 
significant uncertainties regarding the techno-economic state of EVs prevail? 

 
For that purpose, this project examines and develops integrated sustainability 
assessment models that include the socio-economic as well as the environmental 
implications of an electrified transportation sector. In the initial years, four modeling 
efforts were developed. These models are an integrated sustainability assessment 
model of electric vehicles, a stochastic cost simulation model for electric vehicles, an 
electricity mix sustainability model for EVs and a life cycle impact model of alternative 
fuel options. In the later project time frame, the four modeling efforts were combined into 
a dynamic simulation model of EV adoption that include a comprehensive cradle-to-
grave life cycle assessment including uncertainties that will capture the social, 
economic, and environmental impacts of EVs. The models were applied to passenger 
vehicles, buses, delivery trucks, Class 8 trucks, and the integration of V2H technology.  
 
The project resulted in 19 journal publications that are posted on the EVTC website and 
respective journals and presentations to 14 technical conferences. The citations for 
these journal papers are as follows: 
 
Passenger Vehicles 
 
1. Onat, N., Kucukvar, M., and Tatari, O. (2015). “Electric conventional, hybrid, plug-

in hybrid or electric vehicles? State-based comparative carbon and energy footprint 
analysis in the United States.” Applied Energy, Elsevier, 150(2015), 36-49, IF: 
5.261. DOI: 10.1016/j.apenergy.2015.04.001 

2. Onat, N., Kucukvar, M., and Tatari, O. (2014). “Towards life cycle sustainability 
assessment of alternative passenger vehicles.” Sustainability, 6(12), 9305-9342, 
2015 IF: 1.343. DOI:10.3390/su6129305 

3. Onat, N., Kucukvar, M., Tatari, O., and Zheng, Q. D. (2016). “Combined application 
of multi-criteria optimization and life-cycle sustainability assessment for optimal 
allocation of alternative passenger vehicles in the United States.” Journal of 
Cleaner Production, Elsevier, 291-307, 2014 IF: 3.844. DOI: 
10.1016/j.jclepro.2015.09.021 

4. Onat, N. C., Gumus, S., Kucukvar, M., and Tatari, O. (2016). “Application of the 
TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle 
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sustainability performance of alternative vehicle technologies.” Sustainable 
Production and Consumption, Elsevier, 6(2016), 12-25. DOI: 
10.1016/j.spc.2015.12.003 

5. Onat, N., Kucukvar, M., Tatari, O., and Egilmez, G. (2016). “Integration of System 
Dynamics Approach towards Deepening and Broadening the Life Cycle 
Sustainability Assessment Framework: A Case for Electric Vehicles.” International 
Journal of Life Cycle Assessment, Springer, 21(7), 1009-1034. 2014 IF: 4.844, 
DOI: 10.1007/s11367-016-1070-4 

6. Onat, N.C., Kucukvar, M., and Tatari, O. (2016). “Uncertainty-embedded dynamic 
life cycle sustainability assessment framework: An ex-ante perspective on the 
impacts of alternative vehicle options.” Energy, Elsevier, 715-728, DOI: 
10.1016/j.energy.2016.06.129 

Market Penetration Models for Electric Vehicles 

7. Noori, M., Gardner, S., and Tatari, O. (2015). “Electric vehicle cost, emissions, and 
water footprint in the United States: Development of a regional optimization 
model.” Energy, Elsevier, 89(2015), 610-625, 2014 IF: 4.844, DOI: 
10.1016/j.energy.2015.05.152 

8. Noori, M., and Tatari, O. (2016). “Development of an agent-based model for 
regional market penetration projections of electric vehicles in the United States.” 
Energy, Elsevier, 96(2016), 215-230, 2014 IF: 4.844. DOI: 
10.1016/j.energy.2015.12.018 

9. Noori, M., Zhao, Y., Onat, N., Gardner, S., and Tatari, O. (2016). “Light-duty 
electric vehicles to improve the integrity of the electricity grid through vehicle-to-
grid technology: Analysis of regional net revenue and emissions savings.” Applied 
Energy, Elsevier, 168(2016), 146-158, 2014 IF: 5.261. DOI: 
10.1016/j.apenergy.2016.01.030 

Buses 
10. Ercan, T., and Tatari, O. (2015). “A hybrid life cycle assessment of public 

transportation buses with alternative fuel options.” International Journal of Life 
Cycle Assessment, Springer, 20(9), 1213-1231, 2014 IF: 3.988. DOI: 
10.1007/s11367-015-0927-2 

11. Ercan T., Onat N.C., and Tatari O. (2016). “Investigating Carbon Footprint 
Reduction Potential of Public Transportation in U.S.: A system Dynamic 
Approach.” Journal of Cleaner Production, Elsevier, 133(2016), 1260-1276, 2014 
IF: 3.844. DOI: 10.1016/j.jclepro.2016.06.051 

12. Ercan, T., Yang, Z., Tatari, O., and Pazour, J. (2015). “Optimization of transit bus 
fleet’s life cycle assessment impacts with alternative fuel options." Energy, 
Elsevier, 2015, 323-334, 2014 IF: 4.844. DOI: 10.1016/j.energy.2015.09.018 

13. Ercan, T., Noori, M., Zhao, Y., and Tatari, O. (2016). “On the front lines of a 
sustainable transportation fleet: Applications of vehicle-to-grid technology for 
transit and school buses.” Energies, 9(4), 230, 1-22, 2014 IF: 2.077. DOI: 
10.3390/en9040230  
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Vehicle to Grid Technology and Trucks 
14. Zhao, Y., Onat, N., and Tatari, O. (2016). “Comprehensive Life Cycle Assessment 

of Electric Delivery Truck.” Transportation Research Part D: Transport and 
Environment, Elsevier, 47(2016), 195-207, 2014 IF: 1.937. DOI: 
10.1016/j.trd.2016.05.014  

15. Zhao, Y., Ercan, T., and Tatari, O. (2016). “Life Cycle Based Multi-Criteria 
Optimization for Optimal Allocation of Commercial Delivery Truck Fleet in the 
United States.” Sustainable Production and Consumption, Elsevier. DOI: 
10.1016/j.spc.2016.04.003  

16. Zhao, Y., and Tatari, O. (2015). “A hybrid life cycle assessment of the vehicle-to-
grid application in light duty commercial fleet.” Energy, Elsevier, 1277-1286, 2014 
IF: 4.844. DOI: 10.1016/j.energy.2015.10.019 

17. Zhao, Y., Noori, M., and Tatari, O. (2016). “Vehicle to Grid regulation services of 
electric delivery trucks: Economic and environmental benefit analysis.” Applied 
Energy, Elsevier, 170(2016), 161-175, 2014 IF: 5.261. DOI: 
10.1016/j.apenergy.2016.02.097 

18. Sen, B., Ercan, T., and Tatari, O. (2017). “Does a battery-electric truck make a 
difference? – Life cycle emissions, costs, and externality analysis of alternative 
fuel-powered Class 8 heavy-duty trucks in the United States.” Journal of Cleaner 
Production, Elsevier, 141, 110-121, 2015 IF: 4.959. DOI: 
10.1016/j.jclepro.2016.09.046 

Vehicle to Home Technology 
19. Alirezaei, M., Noori, M., and Tatari, O. (2016). “Getting to net zero energy building: 

investigating the role of vehicle to home technology.” Energy and Buildings, 
Elsevier. 2014 IF: 2.884. DOI: 10.1016/j.enbuild.2016.08.044  

 

The list of conference presentations are as follows: 

1. Ercan, T., Onat, N., and Tatari, O. (2016). “Sustainable Transportation Assessment 
for Mode Shift of Commuters: An Integration of System Dynamics and Discrete 
Event Choice Modeling Approaches” The International Symposium on Sustainable 
Systems and Technology (ISSST), Phoenix, Arizona, USA. 

2. Onat, N., Kucukvar, M., Tatari, O., and Egilmez G. (2016). “Dynamic Sustainability 
Assessment of Electric Vehicles: A System Dynamics Approach” The Institute for 
Operations Research and the Management Sciences (INFORMS) International 
Conference, June 12-15, 2016, Waikoloa Village, Hawaii, USA. 

3. Onat, N., Kucukvar, M., and Tatari, O., and Egilmez G. (2016). “Systems Thinking in 
Life Cycle Sustainability Assessment: The Case for Alternative Vehicle Options” 
5th International Social LCA Conference Harvard, June 13-15, 2016, Cambridge, 
USA. 

4. Onat, N., Kucukvar M., and Tatari, O., and Egilmez, G. (2016). “From Conceptual to 
Operational Life Cycle Sustainability Assessment Framework: A Case for U.S. 
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Transportation” The International Symposium on Sustainable Systems and 
Technology (ISSST), Phoenix, Arizona, USA. 

5. Noori, M., and Tatari, O. (2016). “Future Market Share of Electric Vehicles in United 
States”, International Conference on Sustainable Design, Engineering and 
Construction, Tempe, AZ. 

6. Alirezaei, M., Noori, M., and Tatari, O. (2016). “Towards Zero Net Energy Buildings: 
A Techno- Ecological Modeling Approach to Vehicle to Home Technology” 
International Conference on Sustainable Design, Engineering and Construction, 
Tempe, AZ. 

7. Noori, M., Sen, B., and Tatari, O. (2016) “The Impact of United States Corporate 
Average Fuel Economy (CAFE) Standard and Vehicle to Grid (V2G) Service on 
Market Share of Electric Vehicles:Â  An Agent-Based Modeling Approach.” 
International Symposium for Sustainable Systems and Technology Phoenix, AZ. 

8. Ercan, T., Noori, M., Zhao, Y., and Tatari, O. (2016). “Understanding the Future of 
Electricity Grid Integrity: Applications of Vehicle-To-Grid Technology in Transit and 
School Buses”. International Symposium for Sustainable Systems and Technology, 
Phoenix, AZ. 

9. Alirezaei, M., Noori, M., and Tatari, O. (2016) “Investigation of Alternative Fuel 
Vehicle's Role in Achieving a Net Zero Energy Building.” International Symposium 
for Sustainable Systems and Technology, Phoenix, AZ. 

10. Zhao, Y., Noori, M., and Tatari, O. (2016). “Vehicle to Grid Regulation Services of 
Electric Delivery Trucks: Economic and Environmental Benefit Analysis.” 
International Symposium for Sustainable Systems and Technology, Phoenix, AZ. 

11. Onat, N.C., Kucukvar, M., Tatari, O., and Egilmez, G. (2016). “Dynamic Life Cycle 
Sustainability Assessment Framework for Electric Vehicles in the U.S.” 
Transportation Research Board (TRB), 95th Annual Meeting, January 10-14, 2016, 
Washington, D.C, USA. 

12. Onat N.C., Kucukvar, M., and Tatari, O. (2015). “System Dynamics Approach to 
Analyze the Environmental, Social, and Economic Sustainability of Transportation 
Systems.” Big Data Analytic and Education Conference, Europe, July 30-31, 
Istanbul, Turkey. 

13. Onat, N.C., Kucukvar, M., Tatari, O. (2014). “Energy and Carbon Footprints of 
Alternative Vehicle Options: Inclusion of State-specific Variations.” INFORMS 
Annual Meeting, November 9-12, 2014, San Francisco, USA. 

14. Kucukvar, M., Onat, N.C., and Tatari O. (2014). “Water footprint of alternative 
vehicle technologies in the United States.” INFORMS Annual Meeting, November 9-
12, 2014, San Francisco, USA.  

 

In this final report, we include the summary of the critical assessment models that are 
developed as well as the results of the studies undertaken throughout the project. 

 



3.0 State-based Comparative Carbon and Energy Footprint Analysis of 
Electric Vehicles 

3.1 Introduction 

Analyses of alternative vehicle technologies, energy sources, transportation fuels, and 
more efficient ways to use resources have become increasingly popular topics in the 
literature and industry.1 Among the various vehicle alternatives, electric vehicles (EVs) 
and plug-in hybrid electric vehicles (PHEVs) are often considered as better options than 
internal combustion vehicles (ICVs) in terms of GHG emissions and energy 
consumption. In reality, however, making such a decision among these vehicle options 
is not so straightforward due to temporal and spatial variations, such as regional driving 
profiles and the sources of the electricity used. For example, the electricity used to 
power EVs or PHEVs might come from an energy source that is more energy and 
carbon intensive than petroleum. PHEVs use an on-board battery to travel in electric 
mode and consume gasoline when the battery charge is depleted. Therefore, the all-
electric range (AER), or the range for which a PHEV can operate in electric mode, is 
one of the most important parameters to determine its energy use and GHG emission 
rate. In addition to the effects of the AER, the length of vehicle trips determines the 
fraction of total vehicle travel that is powered by either gasoline or electricity. According 
to the National Household Travel Survey (NHTS) in 2009, vehicles that traveled less 
than 48 kilometers comprised 63% of the daily passenger vehicle miles travelled (VMT) 
in the U.S [8]. Therefore, a significant amount of daily travel can be powered by 
electricity, and using PHEVs can reduce the impacts of gasoline use. On the other 
hand, this percentage might be different depending on the driving characteristics of a 
specific region. Hence, the inclusion of these spatial variations is crucial when deciding 
which vehicle technology is the most suitable for the associated region in terms of GHG 
emissions and energy use.   

 
This model differs from previous LCA studies by making comparisons across 50 states, 
including their representative average and marginal electricity generation mixes and 
regional driving patterns. Additionally, GHG emissions and energy consumption during 
vehicle and battery manufacturing and vehicle maintenance are also included in the 
scope of this study. The objectives of this model development are as follows:  

1. to investigate the impacts of regional driving patterns and electricity generation 
mix scenarios (marginal and average) on the energy use and GHG emissions of 
alternative passenger vehicle technologies currently available in the market,  

2. to highlight how these spatial and temporal variations affect the carbon footprint 
and energy consumption performances of these vehicles,  

3. to demonstrate the relative impacts of battery and vehicle manufacturing on GHG 
emissions and energy consumption within the total life cycle of vehicles, 

                                                 
1 The contents of this section were partly published in Onat, N., Kucukvar, M., and Tatari, O. 
(2015). “Electric conventional, hybrid, plug-in hybrid or electric vehicles? State-based 
comparative carbon and energy footprint analysis in the United States.” Applied Energy, 
Elsevier, 150(2015), 36-49, IF: 5.261. DOI: 10.1016/j.apenergy.2015.04.001 
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4. to investigate potential GHG emission reductions and energy savings considering 
the potential market size and market penetration scenarios. 

 
3.2 Methodology 

LCA is a widely accepted method to quantify the environmental impacts of products or 
processes throughout the production, use, and end-of-life phases [9]. Traditionally, 
there are two main LCA methodologies in the literature: process based LCA (P-LCA) 
and input-output based LCA (IO-LCA). On the other hand, sometimes a combination of 
these two is found as more powerful way of conducting a LCA; in the literature, this is 
known as hybrid LCA [10–14].  In this work, P-LCA, hybrid LCA, and IO-LCA were 
utilized depending on the associated content. The production and maintenance of each 
of these vehicles, as well as the upstream emissions from the gasoline supply chain, 
were analyzed with Economic Input-Output Life Cycle Assessment model (EIO-LCA) 
[15], while the electric power supply and battery manufacturing phase were analyzed 
with P-LCA. Data used is collected from publicly available sources such as the U.S. Life 
Cycle Inventory (LCI) database [16], the GREET vehicle cycle model [17], the eGRID 
database [18], and the National Household Travel Survey (NHTS) [8]. Figure 3.1 shows 
the system boundary of the analysis.  
 
Five passenger vehicle types representing different vehicle technologies have been 
comparatively evaluated based on their energy consumption and GHG emissions for 50 
states in the U.S. All vehicles are ranked based on their GHG emissions and energy 
consumption for each state. To account for variability in the electricity generation 
profiles across the 50 states, three different electricity generation scenarios are 
considered: 

1) State-based average electricity generation mix: This scenario is based on 
average state-level electricity power generation profiles in 2009, with derived data from 
the most recent eGRID database [18].  

2) State-based marginal electricity generation mix: This scenario uses 
estimated state-based marginal electricity mix profiles in 2020, with derived data from 
the National Oak Ridge Laboratory’s estimations [19] and from the literature [20]. 

3) 100% solar powered charging stations: This is a futuristic scenario where 
there are solar charging stations and rooftop solar panels to charge electric vehicles; 
currently these technologies are more commonly used in residential and commercial 
buildings. 
 
The vehicle technologies considered are ICVs, HEVs, PHEVs, and EVs. The Toyota 
Corolla (ICV), Toyota Prius (HEV), plug-in Toyota Prius (PHEV-AER18), Chevrolet Volt 
(PHEV-AER62), and Nissan Leaf (EV) have been selected to represent each vehicle 
technology. The useful lifetime for all vehicles is assumed to be 240,000 kilometers 
(150,000 miles) of vehicle travel; the functional unit is 1 kilometer (km) of vehicle travel. 
GHG emissions are reported in grams CO2 equivalents (g CO2-eq.) based on 100 years 
of time horizon Global Warming Potential values recommended by the 
Intergovernmental Panel on Climate Change [21].    
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Figure 3.1 System Boundary of the Analysis 

3.2.1 Vehicle Production 

Energy consumption and GHG emissions from automobile manufacturing are calculated 
for each vehicle type via the EIO-LCA model [15], which consists of identical sectors 
and their interactions, thereby forming the entire U.S. economy. In the EIO-LCA model, 
there is a sector named Automobile Manufacturing (NAICS 336111) where the producer 
price of the vehicle is an input to calculate a set of environmental impacts, including 
GHG emissions and energy consumption. Additionally, the impacts from material 
production are separately calculated with the EIO-LCA model after determining the 
material composition of each vehicle. The material composition of each vehicle type is 
estimated with the GREET 2.7 vehicle cycle model by using their real weights. In the 
GREET model, the material composition of each vehicle part is calculated using the 
total weight of each of the vehicles. After calculating the weight of each material, their 
respective costs are determined and entered as an input for the relevant sector(s) in the 
EIO-LCA model in order to calculate impacts from vehicle material production 
separately. When calculating vehicle manufacturing impacts, battery manufacturing 
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impacts are excluded because the price premiums for HEVs, PHEVs, and EVs over 
conventional vehicles mainly stem from the additional battery and electronics [22]. 
Battery production impacts are calculated with the P-LCA model. Impacts from vehicle 
and battery production are assumed to be independent of regional variations since a 
majority of the vehicles are manufactured in specific places and driven throughout the 
entire country. End-of-life GHG emissions and energy consumption have been found to 
be quite small compared to other life cycle phases and are therefore neglected in this 
analysis [23]. However, as fuel efficiency standards increase, the relative contribution of 
manufacturing-related impacts can increase. It is expected that automobile 
manufacturers will probably use more energy intensive materials such as aluminum, 
which can increase the GHG emissions and energy consumption associated with the 
vehicle production phase, and the recycling of these materials may be more important 
[24–26].  
 

3.2.2 Battery Production  

The choice of battery for the vehicle technologies depends on cost, lifetime, 
performance characteristics (such as depth of discharge), and behavior under high and 
low temperature, energy density, and environmental impacts. EVs and PHEVs typically 
use lithium ion (Li-ion) batteries, while nickel–metal hydride batteries (Ni-MH) are 
generally preferred to power HEVs due to their relatively lower costs [27]. Major 
advantages of Li-ion batteries is that they provide a high power and energy density, and 
that they require little maintenance and there is no scheduled cycling to prolong the 
battery’s life, in addition to small self-discharge and no memory effects [28]. Because 
Ni-MH batteries have lower energy densities (Wh/kg), they can increase the weight of 
the vehicle considerably, which is not desirable since increased weight generally results 
in loss of fuel efficiency. Li-ion batteries are expected to be the most common battery 
technology in EVs in the near future due to their higher energy density and decreasing 
cost [29].   
 
The HEV in our analysis uses a Ni-MH battery, while others (PHEVs and EVs) have Li-
ion batteries. The GREET 2.7 vehicle cycle model was used to calculate GHG 
emissions and energy use from battery production. The weights of the batteries are 
determined from equations in the GREET 2.7 model using peak battery power and 
battery energy values, which were obtained from each manufacturer’s website. The 
weights of the batteries calculated from the GREET model were also compared with 
those published by vehicle manufacturers, and the results were quite similar. According 
to the analysis results, GHG emissions from li-ion batteries were 5.68, 5.59, and 1.98 
gCO2-eq./km for the PHEV-AER62, the EV, and the PHEV-AER18, respectively. In the 
literature, the GHG impacts from li-ion battery production range between 1 to 12 gCO2-
eq./km. One of the key sources of variability in the results relates to battery lifetime 
assumptions. The lifetime is generally defined as a certain amount of charge-discharge 
cycles, but there is no certain agreement regarding the unit of lifetime of batteries 
because of the uncertainties in use patterns and consumer behavior, which can directly 
affect the charge-discharge cycles [29]. Another important source of variability is that 
the studies compared are within the last 15 years, whereas battery technology has 
significantly improved in recent years. Therefore, we selected more recent studies to 



 23

make better comparisons between the results. In this analysis, the battery lifetimes are 
assumed to be same as the vehicle lifetimes, meaning that it is assumed that the 
batteries are never replaced during the vehicles’ operation phase. If the battery is 
replaced in the future, the impacts from battery production may not necessarily be 
doubled because the battery industry is improving rapidly, and so it is possible the 
intensities of the energy requirements and GHG emissions of battery production may be 
lower than they are today. Impacts from battery production are assumed to be 
independent of regional variations so as to maintain consistency with the same 
assumptions made for the vehicle production phase.  
 

3.2.3 Vehicle operation phase 

The use phase is the most carbon and energy intensive phase in the life cycles of all of 
the analyzed vehicles [22,30,31]. The vehicles compared in this analysis are either 
powered with gasoline or electricity. Hence, analyzing the impacts of electricity 
generation, gasoline combustion, and the upstream impacts of each energy source are 
critical. Additionally, the GHG emissions and energy consumption rates associated with 
vehicle maintenance and repair (M&R) are also quantified; these impacts are generally 
smaller than those of the fuel supply and vehicle operation. Impacts stemming from 
M&R of vehicles are calculated with the EIO-LCA tool with purchases from NAICS 
sector 81111 (Automotive Repair and Maintenance). The costs associated with M&R 
are obtained from the U.S. Transportation Energy Data book [32]. The M&R cost for an 
ICV was approximately 5 U.S. cents per km in 2012; this cost is converted into 2002 
dollars using consumer price indexes. The total lifetime M&R cost for an ICV is 
calculated as $8,970. The M&R cost for an EV is approximately 65-80% of that of an 
ICV due to fewer components and moving parts, as well as lower maintenance 
requirements for electric motors in EVs [33,34]. In this analysis, the M&R costs of the 
EV are assumed to be 70% of those of the ICV, while M&R costs of the PHEVs are 
assumed to be 80% of the ICV, and the M&R costs for the HEV are assumed to be 
same as those of the ICV.  
 
The upstream emissions and energy use associated with the gasoline supply chain are 
also calculated with the EIO-LCA tool using NAICS sector 324110 (Petroleum 
Refineries). The producer price for a liter (L) of gasoline was $0.76 in 2002, after 
deducting taxes and profits [35]. Upstream GHG emissions to produce 1 L of gasoline 
are found to be 0.56 kgCO2-eq., whereas the upstream energy consumption is 
calculated as 6.37 MJ per L of gasoline. Direct tailpipe emissions resulting from burning 
1 L of gasoline are found to be 2.26 kg kgCO2-eq. [36]. The GHG emissions and energy 
consumption for the ICV, the HEV, and the gasoline operation mode of the PHEV are 
calculated by determining the energy requirements of each vehicle per km of vehicle 
travel, while the energy delivered to the wheels per L of gasoline is 8.9 kWh [37]. Fuel 
economy labels reported by the EPA are used to calculate energy consumption and 
GHG emissions from the vehicle operation phase in gasoline mode. The major sources 
of variability in GHG emissions and energy consumption in the operation phase of 
vehicles are electricity generation mixes and regional driving patterns.  
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Although electricity use in EVs and PHEVs does not cause tailpipe emissions, the 
electricity generation source(s) used will play a crucial role in determining the resulting 
GHG emissions and energy consumption from operating vehicles in electric mode. The 
GHG emissions and energy consumption from the electricity generation sector are 
calculated for each state using the electricity generation mix profiles in 2009 published 
by the eGRID database [18], which also provides the GHG emissions for each state. 
However, upstream emissions (such as those resulting from extraction of raw materials, 
processing, and transportation of fuels for power generation) were not included in the 
eGRID database. Therefore, both upstream and onsite emissions associated with each 
power generation method based on different resources (such as coal, natural gas, solar, 
hydropower, etc.) are calculated using data from the U.S. LCI database [16]. The U.S. 
average GHG emission factor is calculated as 663.4 gCO2-eq/kWh using the 2009 U.S. 
average power generation mix as provided by the eGRID database, as well as the 
emission factors data from the U.S LCI database. State-based emissions are calculated 
with the same methodology and data sources. On the other hand, it was assumed that 
the existing electricity generation capacity in the U.S. could support additional energy 
demand from the use of PHEVs and EVs for up to 50% of conversion of the U.S. light 
duty automobile fleet to these vehicle types [26,38,39]. For the third scenario, which 
proposes widespread use of solar charging stations, upstream emissions and energy 
consumption to construct the required infrastructure for solar charging stations are also 
included [40]. The LCA inventory and power generation capacity of the solar charging 
station is obtained from literature [40,41]. This solar charging station was in Uppsala, 
Sweden, where average annual sun-hours are approximately 2.5 hours a day. The total 
lifetime electric power generation capacity of this particular charging station is 76 MWh. 
To estimate its potential life time electric power generation capacity in each state, state-
specific sun-hour data from the U.S. National Renewable Energy Laboratory (NREL) is 
used [42]. The total lifetime GHG emissions and energy consumption of the solar 
charging station is divided by state-specific potential electric power generation capacity 
for each state to obtain state-specific GHG emissions and energy consumption per kWh 
of solar electric power generation.   
 
Since the GHG intensity of electricity generation is highly dependent on the energy 
source, the generation mix of the incremental electricity demand (the marginal 
electricity) from EVs and PHEVs should be also taken into account. The inclusion of 
marginal electricity to calculate associated GHG emission intensity has already been 
suggested by many researchers [43–47]. Marginal electricity demand is usually 
provided through fossil fuels, which have significantly high GHG intensities and 
therefore cause higher operation phase emissions for EVs and PHEVs. This is because 
the low-GHG-intensity power generation sources (nuclear, solar, wind, etc.) are 
generally 100% in use, and so any remaining fluctuating electricity demand must be met 
using nonrenewable energy generation sources (such as natural gas, coal, and 
petroleum) due to their relatively lower short-run marginal costs [30]. The utilized 
production capacity of renewable energy sources are generally not restricted or driven 
by the change in electricity demand, but rather they are influenced by the availability of 
sunlight for solar panels, wind for wind turbines, weather conditions for hydropower, 
security reasons for nuclear power plants, etc. [45]. The marginal electricity mix profiles 
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are obtained from a study conducted by Hadley and Tsvetkova at the Oak Ridge 
National Laboratory (ORNL) [19], in which they calculated marginal electricity mix 
profiles for 13 different regions as defined by the North American Electricity Reliability 
Corporation (NERC) and then estimated marginal electricity mix profiles for 2020 and 
2030. Their estimation is based on 6 different charging scenarios; the base case (no 
additional load on grid), and different combinations of two charging times and three 
charging rate scenarios. They assumed that 25% of the existing fleet is replaced by 
PHEVs between 2020 and 2030. Sandy [20] simplified the analysis conducted by Oak 
Ridge Laboratory and averaged the marginal grid results of the 6 scenarios. 
Additionally, Sandy calculated marginal electricity mix profiles for Alaska and Hawaii, 
which were not included in the ORNL’s study. Marginal electricity profiles for each 
region are derived from Sandy’s study. Considering that these regions are not bound by 
state borders, a state can be within multiple regions. In these cases, the state-based 
marginal emissions are calculated for each region associated with these states, and 
multiple results are provided. In addition to the inclusion of marginal electricity mix 
profiles, electricity transmission loss factors for each region are also taken into 
consideration for both scenarios.  
 
Another important source of variability among the states’ data is driving patterns. This 
refers to actual daily vehicle km travel patterns. Since PHEVs use both gasoline and 
electricity, determining the portions of total km of vehicle travel in each mode is crucial 
for calculating their impacts. The percentage of the distance traveled in electric mode is 
represented as the utility factor (UF), which depends on the AERs of the PHEVs in that 
a longer AER will provide a greater share of kilometers traveled in electric mode and 
thus leads to a higher UF. A cumulative distribution of actual daily vehicle km travelled 
was constructed to calculate state-based UFs. This distribution indicates the percentage 
of cumulative daily vehicle kilometers travelled that is less than a given distance per 
day. For instance, 35% of the vehicle kilometers traveled are less than 18 km in the 
state of Florida, which means the utility factor of the PHEV-AER18 (Prius) is 0.35. It 
should be noted that the PHEVs are assumed to be fully charged once per day.  
 
3.3 Results and Discussions 

The results for the U.S. average case (on a national scale) are given as a base scenario 
for comparison with Scenarios 1, 2, and 3. Also, the contribution of each life cycle phase 
is calculated. According to the national-scale results, the PHEV18 reduces the GHG 
emissions by 29% compared to the ICV, while the GHG emissions for the EV, the HEV, 
and the PHEV18 are relatively similar. Emissions from vehicle and material 
manufacturing range from 11% to 23% of total life cycle emissions, and these emissions 
are highest for the EV. GHG emissions from battery manufacturing are found to be 
insignificant compared to total life cycle emissions, although these emissions were 
highest for production of li-ion batteries for the EV and the PHEV62. The operation 
phase is the most dominant phase for both GHG emissions and energy consumption. 
Figure 3.2 shows the total life cycle impacts and contribution of each phase per vehicle 
kilometer traveled. Comparing the results found for the LCA’s of alternative vehicles is 
not an easy task, due to variations in the assumptions made for critical parameters such 
as electricity generation mix, driving patterns, vehicle specifications, and useful lifetime. 
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In the literature, e GHG emissions of the operation phase of EVs range from 0.9 gCO2-
eqv/km (hydroelectricity) to 231 gCO2-eqv/km (coal electricity). For more information 
about the comparison of the results with the literature, please see the following review 
studies [29,48]. 

 

 

Figure 3.2 Life cycle impacts of each vehicle type; a) GHG emissions, b) Energy 
consumption 

From an energy-consumption perspective, the HEV is found to be the best option, as 
the EV and the longer-range PHEVs were all found to be less energy efficient. This 
might be due to energy efficiency losses during the transmission, distribution, and 
generation of electric power. Based on 2009 electricity generation mix in the U.S., 2.37 
kWh (Feedstock+fuel) of energy is required per kWh of electricity generation [17,18]. 
The contributions of each phase to total life cycle impacts are similar for GHG emissions 
as well. Since the energy consumption and GHG emission impacts are both highly 
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dependent on the electricity generation mix used, the results for each state will vary 
significantly.  
 

3.3.1 State-based Average Electricity Generation Mix Scenario  

When state-specific average electricity generation mixes and driving patterns are taken 
into account, the results for each state are quite different compared to the national-scale 
U.S. average results. Figure 3.3 shows the best vehicle option for each state in terms of 
GHG emission and energy consumption. According to the results of Scenario 1, EVs 
are the least carbon-intensive vehicle option in 24 states, which accounts for a market 
size of 38% of the number of registered LDVs in the U.S. In other words, the total 
number of vehicles can be replaced by EV accounts of 38% of the LDVs in the U.S. 
Considering that the range of the EV analyzed in this work is 135 km, drivers who must 
drive longer distances are not within the targeted market by the EV. On the other hand, 
10 states (with 16% of the total number of LDVs) favor the PHEV18 based on spatial 
characteristics from a GHG emissions perspective. HEVs are better options for 17 
states (with 21% of the total number of automobiles). The PHEV62 and the ICV were 
not ranked as a best option in any state. 
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Figure 3.3 State level vehicle preference according to scenario 1; a) GHG emissions, b) 

Energy consumption. 

Energy consumption results are relatively homogeneous compared to GHG emission 
results. HEVs are ranked as the best option in 45 states (61% of the total number of 
LDVs), while EVs were found to be the better option in only 5 states. All other states 
found PHEV18s to be the best option in terms of energy consumption.  
 

3.3.2 State-based Marginal Electricity Generation Mix Scenario 

According to the marginal electricity generation mix scenario, the HEV is the least GHG 
intensive option in most of the states. The state-level preference results based on GHG 
emissions for Scenario 2 are presented in Figure 3.4. Although Scenario 2 is calculated 
based on NERC regions that are not bounded by state borders, those states that lie 
within multiple regions indicate the same result. The results for the states that fall into 
more than one regions are given for each region.  
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Figure 3.4 State level vehicle preference in the terms of GHG emissions for scenario 2. 

According to Scenario 2, only two vehicle types are selected based on state-specific 
GHG emissions. There is a significant change in the GHG emission results of EVs 
compared to the previous scenario. EVs are not ranked as the best vehicle option in any 
state. HEVs are ranked as the best option in 33 states (39% of the total number of 
LDVs), while PHEV18s are selected as the best option for 18 states (28% of the total 
number of LDVs). Like with EVs, PHEV62s and ICVs are not favored by any of the 
states. 
 
HEVs are found to be the best option based on the energy consumption performance of 
each vehicle type in every state. Therefore, the state-specific results were not shown in 
a separate map. The second best option is PHEV18s for all of the states as well. The 
rest of the ranking order (3rd, 4th, and 5th) may differ based on state-specific marginal 
electricity mixes and driving pattern characteristics. 

 

3.3.3 Solar Energy Scenario 

As scenario 3 proposes the widespread use of solar power to charge EVs, the GHG 
intensity and energy requirements to produce electricity are both significantly reduced. 
According to scenario 3, EVs are ranked as the best vehicle technology option in every 
state for both GHG emissions and energy consumption impacts. Therefore, state-
specific results are not presented in separate maps. Utilization of solar power provided 
an electricity source with very low carbon intensity (26-58 gCO2-eq / kWh) and quite low 
energy requirements (0.04-0.09 kWh/kWh) to generate electricity. Additionally, the 
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transmission and distribution losses are also saved compared to previous scenarios. 
The total life cycle GHG emissions and energy consumption per kilometer traveled are 
calculated for EVs ranges between 101-110 gCO2-eq. and 2-3 MJ, respectively. 
According to scenario 3, the GHG emission reductions that can be achieved with EVs 
range between 73%-75%, while the energy consumption reduction is calculated as 54 
to 57% compared to ICVs. These are the highest reduction rates compared to other 
scenarios. 
 

3.3.4 Sensitivity of Key Parameters 

Sensitivity analysis is conducted to account for variability in GHG energy emission 
factors, energy consumption rates, and UFs. Sensitivity analysis is conducted by 
varying one input variable while keeping other values at their baseline. In Figures 3.5 
and 3.6, the U.S. national average values are used as a baseline, which are based on 
average electricity generation mix scenario. LCA impacts of vehicle options are 
presented as a function of GHG and energy intensity in Figure 3.5. For the purpose of 
the sensitivity analysis, the UF values for the PHEV18 and the PHEV62 are assumed to 
be constant and equivalent to U.S. average values. As can be seen from the figure, the 
PHEV62 has a higher GHG emission rate than the ICV when the GHG intensity of the 
electricity supply is above 950 gCO2-eqv/kWh. Any GHG emission factor below 600 
gCO2-eqv/kWh makes EVs the least carbon intensive option. From an energy 
consumption perspective, per km energy consumption of EVs are the least when the 
energy required to generate 1 kWh of electricity is less than 1.25 kWh. Any power 
generation scenario above 1.75 kWh/kWh of energy consumption makes the HEV the 
most energy efficient option, while the PHEV18 is the least energy intensive option in 
the range between 1.25 and 175 kWh/kWh.  
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Figure 3.5 LCA impacts as a function of GHG and energy intensity, a) GHG emissions, 

b) Energy consumption per kilometer vehicle traveled. 

The sensitivity of UFs are also important when considering the performance of PHEVs 
under different charging and driving scenarios. In this regard, GHG emissions and 
energy consumption of the vehicle options are also analyzed as a function of various 
UFs ranging from 0 to 1, and the results are presented in Figure 3.6. The GHG emission 
intensity and energy consumption factors are the U.S. average values and kept 
constant for the purpose of the sensitivity analysis. The variation starts from UF=0, 
meaning that PHEVs are in full gasoline mode, to UF=1.00, meaning that PHEVs are 
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operating in full electric mode. If a PHEV charged twice a day, its utility factor would be 
doubled, assuming that it is fully charged each time. Although the applied methodology 
to estimate UFs are very common in literature [22,46,49–53] and used by EPA fuel 
economy labeling, it has some uncertainties related to driver characteristics and mixed 
adoption. This is, of course, a fleet-wide estimate. The caution from EPA that “your 
mileage may vary” should be highlighted here, if your driving style and especially your 
daily driving distances can change the fuel economy significantly. To account this 
variability, these sensitivity figures can be helpful to assess performance of PHEVs 
under different circumstances. As can be seen from Figure 3.6, life cycle GHG 
emissions of the PHEV62 is more sensitive under varying UFs due to its less efficient 
gasoline mode then the PHEV18’s. The LCA carbon footprint of the EV and HEV are 
almost the same and follow a constant trend. The UFs affect only LCA impacts of 
PHEVs. Energy consumption per vehicle kilometer travel for PHEVs has a different 
trend and PHEV62 consumes more energy than PHEV18 in all of the cases. It can be 
also concluded that the shift from gasoline consumption to electricity consumption 
increases the energy intensity of the vehicle operation. In other words, the efficiency of 
gasoline utilization is more efficient than the utilization and generation of the electric 
power. This might be because of the significant losses in the power generation through 
non-renewable energy sources and transmission & distribution losses in the power 
generation sector. In addition to those energy losses, the electric motor will have 
additional energy losses depending on its efficiency.  
 
In addition to sensitivity analysis of national level parameter, a state-specific sensitivity 
analysis for UFs is conducted. Due to high number of states, certain states, which 
represent the highest, medium, and lowest carbon and energy intensities, are selected 
and presented in Figure 3.7. These figures are based on the average electric power 
generation mix scenario. Figure 3.7(a) shows the sensitivity of UFs on the total LCA 
GHG emissions of WV, which has the highest GHG emission rate per kWh of electric 
power generation. Therefore, as the UF increases per km GHG emissions of PHEVS 
steeply increases. In Figure 3.7(b), When the GHG emission rate per kWh of electric 
power generation reduces, the impact trends of PHEVs are reversed, which means the 
GHG emission rate of electricity becomes less than that of gasoline combustion. In 
Figure 3.7(c), the sensitivity of UFs increased due to greater gap between GHG 
emission rates of gasoline combustion and electricity production. The GHG emission 
trends in the rest of the states are in between the lines shown in Figure 3.7 (a) and (c), 
which have the highest and lowest GHG emission rates, respectively. The sensitivity of 
UFs is higher for energy consumption, shown in Figure 3.7 (d) through (f). Similarly, 
states having highest, medium, and lowest, energy consumption rates per kWh of 
electric power generation. If the energy efficiency of power generation is worse than that 
of using gasoline, the utilization of electric power increases the overall energy 
consumption of PHEVs. 
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Figure 3.6 LCA impacts as a function of UF varying from 0 to 1, a) GHG emissions, b) 

Energy consumption per kilometer vehicle travels. 
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Figure 3.7 State-specific sensitivity results based on average electric power generation 

mixes a) WV, b) MN, c) VT, d) DC, e) NE, f) ID  

3.3.5 GHG Emission Reduction and Energy Saving Potentials 

Several market penetration scenarios are considered to show the relative GHG 
emission reduction and energy saving potential of replacing the current passenger 
vehicles (excluding SUVs, minivans, pickup trucks). To assess the potential market 
share for EVs, PHEVs, and HEVs, the data for the proportions of the different class 
sizes is required. However, such data was not available in the publicly accessible 
sources. Therefore, we estimated the number of LDVs in the different EPA size classes 
on road by analyzing the number of LDVs since 1975 [54]. Then the annual sale 
numbers were multiplied by the survival rates, which are functions of model year, which 
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was obtained from a technical report by the National Center for Statistics and Analysis 
[55]. After the current LDV composition by EPA size class is estimated, the targeted 
market for the analyzed vehicle composition is estimated. According to this estimation, 
67% of LDVs are composed of passenger cars, which corresponds to around 95 million 
vehicles in the U.S. However, the percentage share might be different for each state. 
However, we were not able to find state-specific data for the LDV composition. 
Therefore, the estimated national LDV composition is assumed to be identical for all 
states. Since the number of automobiles (including both passenger vehicles and SUVs) 
are available for each state, the number of passenger vehicles in each state can be 
derived from the estimated LDV composition [56].  Furthermore, the existing market 
share and percentage of annual sales of HEVs, PHEVs, and EVs are also estimated by 
using the estimated market size and annual sales of each alternative passenger vehicle 
type (excluding SUVs and pickups) [57]. The current market share of HEVs, PHEVs, 
and EVs are 0.00269%, 0.000113%, 0.000095%, respectively. Although current market 
shares are quite low, the numbers of annual sales are increasing exponentially. The 
potential GHG reductions and energy savings are considered for three different market 
penetration scenarios. In the first scenario (MP-S1), we estimated the 2020 market 
shares of each vehicle type for each state via regression analysis using the sale trend of 
each vehicle type. Moreover, optimistic scenarios such as %5 (MP-S2) and %20 (MP-
S3) market penetrations are also investigated for the 2020 marginal state-specific 
electricity generation mix. In all of the states, the energy savings potentials are 
0.0007%, 0.88%, and 3.5% of the total energy consumption for the market penetration 
scenarios of 0.004% (estimated with regression), 5%, and 20%, respectively. Likewise, 
the impacts of various penetration rates on emission reduction and energy saving 
potentials are also investigated. It should be noted that EVs are not a favorable 
candidate for drivers who must drive longer distances than the EV’s AER (135 km). 
Therefore, this vehicle cannot penetrate the segment of a market composed of people 
driving more than 135 km. The market size of EV is calculated by subtracting this 
segment using cumulative daily travel distance data obtained from NTHS [8]. Figure 3.8 
shows the sensitivity of percentage savings of each vehicle type under different market 
penetration rates ranging from 0% to 100%. This sensitivity analysis was conducted 
based on national average energy consumption and carbon footprint results. 
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Figure 3.8 Reduction potentials as a function of market penetration rates, a) percentage 

reduction of GHG emissions, b) Percentage reduction of energy consumption 

The GHG emission reduction potentials of PHEV18s, EVs, and HEVs are relatively 
higher than those of PHEV62s. As their market penetration increases, this emission 
reduction can be achieved by increasing adoption of PHEV18s, which have a higher 
slope than any other option. On the other hand, HEVs and PHEV18s are superior to 
EVs and PHEV62s in terms of energy savings. The life cycle energy consumption 
values for PHEV62s and ICVs are very similar, and therefore, the PHEV62 does not 
achieve significant energy savings.  
 
3.4 Conclusions and Recommendations  

This model demonstrates the effects of spatial and partially temporal variations 
(scenario 2) on the GHG emissions and energy consumption rates of alternative vehicle 
passenger technologies (HEVs, PHEVs, and EVs) and highlights how these factors can 
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influence the vehicle technology preference of any given state. Summary of the results 
are as follows: 

 The impacts of battery and vehicle manufacturing were found to be much smaller 
than those of the operation phase of the vehicles in all of the proposed scenarios.  

 The inclusion of spatial and temporal variations changed the LCA energy 
consumption and GHG emissions results significantly. 

 U.S. average results indicated that PHEV18s and HEVs have the lowest GHG 
emissions and energy consumption rates, respectively. 

 According to Scenario 1, EVs are the least carbon-intensive vehicle option in 24 
states, corresponding the 38% of the number of registered LDVs in the U.S. On the 
other hand, HEVs are found to be the most energy-efficient option in 45 states. 

 The results of Scenario 2 demonstrate that widespread adoption of EVs is not a 
favorable strategy given the existing and near-future marginal electricity generation 
mix, as EVs are not ranked as the best vehicle option in any state. Instead, HEVs 
are found to be most energy-efficient option in all of the states in this scenario. 

 The widespread use of solar power improved the performance of PHEVs and EVs 
significantly. According to Scenario 3, the adoption of EVs can result in reductions of 
up to 73% and 55% in GHG emissions and energy consumption, respectively. These 
are the highest reduction rates that can be achieved compared to other scenarios. 

 Variations of GHG emission factors of electric power generation showed that any 
GHG emission factor below 600 gCO2-eqv/kWh would make EVs the least carbon 
intensive option. On the other hand, EVs can be superior to other alternatives in 
terms of energy-consumption, if the required energy to generate 1kWh of electricity 
is less than 1.25 kWh. Life cycle GHG emissions of PHEV62s are more sensitive 
under varying UFs due to their less efficient gasoline mode compared to PHEV18s. 

 The results of the market penetration analysis showed that the GHG emission 
reduction potentials of PHEV18s, EVs, and HEVs are relatively higher than those of 
PHEV62s. In terms of energy savings, HEVs and PHEV18s are relatively better 
options as opposed to EVs or PHEV62s. On the other hand, estimated state-specific 
market penetration rates for alternative vehicle options showed that these savings 
are quite limited due to low market penetration rates in the near future.  

 Based on a comparative evaluation of three different scenarios, it can be concluded 
that the use of renewable energy sources to power EVs and PHEVs should be 
encouraged to achieve reductions in GHG emissions and energy consumption.  

Although solar energy has become increasingly popular as a renewable energy source, 
the number of solar charging stations is still very limited. Increased concerns regarding 
the highly carbon intensive structure of the current U.S. electricity grid have stimulated 
the development of more effective electricity generation methods for EVs and PHEVs. 
Considering that there are significant energy losses during electricity generation, 
distribution, and transmission, the use of on-site solar energy can reduce these losses 
and thus provide a more efficient means of powering EVs and PHEVs. Additionally, the 
market share of PHEVs is expected to increase [58], which might require additional 
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upgrades in the transmission and distribution systems and the construction of new 
power plants in the future. The increased electricity demand is usually met either with 
conventional means, with large power plants located far from the demand center, or 
with smaller power generation options utilizing renewable energy sources. The latter is 
known as distributed generation, which can be provided through utilization of 
Photovoltaic (PV) systems [59]. As the power generation unit cost has been declining 
for solar technologies, the use of PVs is expected to be greater [60]. PVs can serve as 
charging stations for EVs and PHEVs, and may also serve as a power generation 
source to the grid. Similarly, rooftop PV panels in residential and commercial buildings 
can serve as a distributed power generation source and as an environmental friendly 
recharging option for EVs and PHEVs.  
 
While results of this work highlight issues related to spatial and temporal variations, 
there are other sources of variations such as driving behavior and conditions, weather 
conditions, and uncertainties related to charging behavior, utility factors, and market 
[61,62]. It should be noted that these factors can change the fuel economy and 
associated impacts significantly. Therefore, state-wide decisions should be studied in 
further detail to account for all possible outcomes and develop more effective local and 
national policies.  
 
This work addressed spatial and temporal aspects of GHG emissions and energy 
reduction. However, criteria pollutants in EV life cycle may constitute a larger portion of 
social costs than GHG emissions [63]. There are certain counties which do not meet the 
national primary or secondary ambient air quality standards. Additionally, many policies 
to promote EVs do not primarily aim to reduce GHGs only but rather to reduce oil 
consumption. Hence, any regional policy prescription should not be based on GHG or 
energy consumption estimates alone. Although this work does not investigate the 
economic feasibility of each of these scenarios, the use of renewable energy to power 
electric vehicles is inevitably required to achieve a carbon-free transportation system in 
the U.S. It should also be noted that the marginal electricity scenario is the most realistic 
scenario among the proposed policies, and its inclusion is therefore suggested by 
various researchers [20,43–47]. Hence, the implementation of renewable-energy-based 
charging options for EVs and PHEVs is highly recommended.  
 
Moreover, the reduction potentials of the evaluated alternative passenger vehicle 
options in Scenarios 1 and 2 are marginal reductions, which may not be enough to 
reduce or even stabilize the GHG’s stored in the atmosphere. Estimating these impacts 
from such a dynamic system requires a holistic dynamic system approach in which all of 
the variables of the system and the interactions among them are captured [50]. On the 
other hand, because the sustainability concept is an optimization process among three 
pillars encompassing environmental, economic, and social dimensions [64–67], impacts 
from the adoption of alternative vehicle technologies should be analyzed with inclusion 
of these three types of dimensions. Therefore, the next step to analyze the impacts of 
alternative vehicle technologies should be an integration of all sustainability dimensions 
with a dynamic modeling approach. 
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4.0 Socio-Economic Life Cycle Sustainability Assessment Framework 
for Electric Vehicles  

4.1 Introduction 

The U.S. transportation sector’s environmental impacts are growing steadily, and 
transportation-related environmental pressures such as energy requirements and 
climate change are increasingly scrutinized because of concerns related to 
sustainability.2 In this regard, alternative vehicle technologies, as an option to reduce 
negative environmental impacts of transportation, have gained a tremendous interest in 
literature as well as in industry. Even though there are numerous efforts presenting life-
cycle based methodologies to investigate the environmental viability of alternative 
transportation options, the socio-economic aspects of transportation sustainability are 
not addressed sufficiently [68]. The environmental dimension of sustainability is an 
important pillar of sustainable development; however social and economic dimensions 
have to be integrated into a holistic quantitative sustainability assessment framework to 
propose economically viable, socially acceptable, and environmentally benign policies 
[66,69,70].  

The efforts aiming to estimate the sustainability impacts of the alternative vehicle 
options are often limited by narrowly defined system boundary and lacks of a system 
perspective. Although product level assessment methods are useful, they are not 
capable of answering macro-level questions and providing a more comprehensive 
framework [70–72]. Analysis of alternative vehicle systems needs a holistic 
sustainability accounting which requires a set of environmental, economic and social 
indicators [73]. The difficulties related to analyzing the social and economic impacts of 
transportation stem from lack of appropriate methods, tools and availability of data. The 
majority of the studies which have conducted an environmental life-cycle assessment of 
alternative vehicles mainly focused on the limited environmental impact categories 
including greenhouse gas emissions, energy consumption, and some atmospheric 
pollutants [29]. However, the socio-economic effects of transportation should be 
considered since the society and economy are among the three main pillars of 
sustainability which are critical for the quality of life [74]. In this regard, life cycle 
sustainability assessment models can be critical for assessing the long-term 
sustainability of alternative vehicle technologies not only from environmental 
perspective but also from social and economic standpoints. While there are several 
approaches analyzing the environmental, economic, and social impacts of alternative 
vehicle technologies, these approaches only provide a snapshot analysis with an 
isolated view of all pillars of sustainability and neglecting the bigger picture as a system.  
                                                 
2 The contents of this section were partly published in Onat, N., Kucukvar, M., Tatari, O., and 
Egilmez, G. (2016). “Integration of System Dynamics Approach towards Deepening and 
Broadening the Life Cycle Sustainability Assessment Framework: A Case for Electric Vehicles.” 
International Journal of Life Cycle Assessment, Springer, 21(7), 1009-1034. 2014 IF: 4.844, 
DOI: 10.1007/s11367-016-1070-4 
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This model develops a more deepened and broadened approach from a system 
perspective in order to provide an in-depth sustainability impact assessment of 
alternative vehicle technologies. The proposed model is capable of capturing social, 
economic, and environmental impacts considering the dynamic interdependencies and 
causal relationships among these impacts of the transportation system, and its 
components.  

4.1.1 Life cycle sustainability assessment 

Almost 12 years have passed since Walter Klöpffer and his colleagues introduced the 
life-cycle sustainability assessment (LCSA) framework where three individual life cycle 
assessment methodologies are combined: Environmental Life Cycle Assessment (LCA), 
Social Life Cycle Assessment (SLCA), and LCA-type Life Cycle Costing (LCC) [75,76]. 
This framework was then put into the conceptual formula (LCSA = LCA + LCC + SLCA)  
by Klöpffer (2007). Heijungs et al. (2012) provided a computational structure for LCSA 
and developed a transparent description of how to calculate the LCC and the value 
added across the life cycle. In the literature, the applications of LCSA for large systems 
are still rare. Guinée et al. (2011), Guinée (2016) and Zamagni et al. (2013) emphasized 
the importance of the LCSA framework and discussed the necessity of system-based 
sustainability accounting methods for future LCSA models.  

In this regard, some studies used input-output based LCA and hybrid LCA for a system-
based LCSA analysis. For instance, Wood and Hertwich (2012) discussed the 
comprehensiveness of input-output analysis in LCSA, particularly for socio-economic 
analysis. In  response to the current research needs for system-based LCSA methods, 
Kucukvar et al. (2014b) developed an optimization model in which a hybrid LCSA and 
compromise programming methods are conjunctively used to carry out a multi-criteria 
decision analysis of hot-mix and warm-mix asphalt mixtures. In other work, Kucukvar et 
al. (2014c) presented a fuzzy multi-criteria decision making method applied to ranking 
problem based on the life cycle sustainability performance of different pavement 
alternatives constructed with hot-mix and warm-mix asphalt mixtures. Onat et al. 
(2014c) also used the LCSA framework for a (Triple-bottom-line, TBL) sustainability 
analysis of U.S residential and commercial buildings and demonstrated the usefulness 
of input–output modeling to quantify sustainability impacts as integration into the LCSA 
framework. Onat et al. (2014a) built a hybrid LCSA model by using 19 macro level 
sustainability indicators for comparative life cycle sustainability performance of 
conventional gasoline, hybrid, plug-in hybrid with four different all-electric ranges, and 
full battery electric vehicles in the United States. In recent works, Onat et al. (2015a) 
presented an application of TOPSIS and intuitionistic fuzzy set approach for ranking the 
life cycle sustainability performance of alternative vehicle technologies. Additionally, 
Onat et al. (2016) presented an integrated novel approach by combining multi-criteria 
optimization with LCSA framework for the optimal distribution of alternative passenger 
cars in the United States. However, only a handful of studies addressed this issue and 
expand the system boundary of LCSA to economy-wide analysis. 

4.1.2 Broadening and deepening the LCSA framework 

LCSA framework is still under development and there is an ongoing research to 
eliminate the current shortcomings of the proposed LCSA framework and advance it for 
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future applications [85,86]. The Coordination Action for innovation in Life Cycle Analysis 
for Sustainability (CALCAS) is a partnership-based project, funded by the European 
Commission under 6th Framework Programme [87,88]. In general, the CALCAS project 
has the following two objectives to further improve the life-cycle modeling for 
sustainability assessment [89,90]: 

1. Deepening LCA by considering the dynamic relationships among the LCA 
parameters and analyzing the complex causality mechanism between the 
system parameters, and  

2. Broadening LCA by including environmental, social and economic aspects 
and broaden the system boundary from micro-level analysis to macro-level. 

In a Deliverable 17 Final Report of CALCAS project, several models are suggested to 
broaden and deepen the existing LCA framework (CALCAS, 2009). For instance, 
material flow analysis, substance flow analysis, environmentally-extended input-output 
analysis, hybrid life cycle models and general equilibrium models are listed among the 
most useful analytical models for deepened and broadened LCA [92]. However, most of 
these methods provide a snapshot analysis without considering the dynamics of life 
cycle sustainability impacts over a period of time. Also, using these analytical 
approaches, mostly life cycle inventory of products of systems analyzed in isolation and 
causalities between the environmental, social and economic indicators and complex 
interactions among the three pillars of sustainability are not fully investigated. In a 
recent paper on Concept, Practice and Future Directions for the LCSA, the following 
weaknesses are highlighted for the current LCSA framework [80]: 

 Social aspects of LCSA framework is less developed and there is a further 
research needs on developing SLCA,  

 Mechanistic understanding by looking at the environmental LCA, social LCA and 
life cycle cost assessment results individually,  

 Lack of understanding the mutual dependencies and complex interactions among 
the three pillars of the sustainability. 

According to the aforementioned comments that address critical points for future LCSA, 
broadened and deepened LCSA should go beyond the identifying the snapshot of 
sustainability hotspots [80]. Hence, LCSA requires the consideration of dynamic 
relationship between LCSA indicators and provide additional insights regarding the 
dynamic effects of products or systems’ sustainability implications. At this point, system 
dynamics can be a superior modeling approach to address the future research needs of 
advanced LCSA. The importance of dynamic modeling approach in LCSA is also 
highlighted in the literature addressing the issue of developing integrative approach for 
LCSA which attempts to develop more holistic sustainability assessment framework and 
link dynamic interrelations between LCSA indicators over a period of time (Cucurachi 
and Suh, 2015; Halog and Manik 2011; Marvuglia et al. 2015). 

4.1.3 Motivation and research objectives 

As a response to knowledge gaps found in the literature, this research aims to advance 
the state-of-the art in LCSA literature and broaden and deepen the current 
understanding of LCA. To alleviate this goal, the proposed research will explore the 
dynamic interrelationships between the environmental, social, and economic aspects of 
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U.S. passenger cars’ sustainability impacts from life cycle sustainability perspective and 
study the scenario-based projections for the long-term policy making. With the overall 
goal of advancing the state-of-the-art in LCSA framework and state-of-practice of 
transportation sustainability, the main objectives of this study are presented as follows:  

1) Broaden the existing LCA framework by considering macro-level environmental, 
economic and social impacts in an integrated way, 

2) Deepen the existing LCA framework by capturing the complex dynamic 
relationships between social, environmental, and economic indicators through 
causal loop modeling,  

3) As an effective approach towards understanding the dynamic complexity of 
transportation sustainability, develop a SD simulation model that can be utilized 
to understand the triple bottom line impacts of alternative vehicles, and finally 

4) Investigate the impacts of extreme customer choice scenarios as a novel 
approach for selection of a macro-level functional unit considering all of their 
inherent mutual relationships in the environmental, social, and economic aspects.  

Overall, this research is a first and an important step towards developing integrated and 
dynamic LCSA framework for sustainability assessment of new generation 
transportation systems. 

4.2 Methodology 

System dynamics modeling is utilized to model the U.S. passenger transportation 
system and its interactions with economy, the environment, and society. The proposed 
model aims to quantify the macro-level social, economic, and environmental, TBL, 
impacts of passenger vehicles from an integrated system analysis perspective. Analysis 
covers the TBL impacts related to manufacturing and operation phases of internal 
combustion vehicles (ICVs), hybrid electric vehicles (HEVs), plug-in hybrid electric 
vehicles (PHEVs), and battery electric vehicles (BEVs). The Electric Vehicles (EV) is a 
typical type of battery electric vehicles (BEV), has an electric motor powered by a 
battery. The hybrid electric vehicle (HEV) is a vehicle utilizing both an electric motor and 
an internal combustion engine. The Plug-in Hybrid Electric Vehicle (PHEV) can be 
charged either from the electricity grid or using the internal combustion engine [94]. The 
useful lifetime is assumed to be 150,000 miles per vehicle. The comparison is made 
based on extreme scenarios for each vehicle such as market share for BEVs is to be 
100% by 2050.  

A total of seven macro level impact categories are selected and the impacts are 
quantified from 1980 to 2050. The proposed SD model is composed of four 
comprehensive sub-models: environmental, economic, social, and transportation, which 
contains smaller modules such as population, travel need and on-road fuel efficiency, 
CO2 emissions and climate change, particulate matter formation (PMF), photochemical 
oxidant formation (POF), vehicle ownership cost, human health, public welfare, 
employment, etc.  
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4.2.1 Problem statement  

Problem definition is a formal step of SD modeling. The reference mode is selected as 
the change in temperature (°C) of the atmosphere and upper ocean compared to 
preindustrial levels due to greenhouse gas emissions [95]. Figure 4.1 shows the annual 
mean surface air temperature change between 1980 and 2015. 
 

 
Figure 4.1 Atmospheric temperature change between 1980 and 2014 

4.2.2 Indicator selection and identification of parameters 

Parameters for environmental impact categories, contribution to climate change and 
atmospheric emissions are selected. The majority of the past studies conducted an 
environmental LCA of conventional and electric vehicles mainly focused on these 
impact categories due to dominant impacts of transportation activities on the 
atmospheric pollution [29,96]. Furthermore, the socio-economic effects of transportation 
should be considered since they are highly critical for the quality of people’s lives [74].  

In this research, contribution to GDP, cost, employment public welfare and human 
health are considered among the most critical socio-economic indicators of sustainable 
transportation. The importance of these socio-economic indicators have already been 
discussed in previous studies. For instance, Offer et al. (2010) focused on the economic 
impacts of electric vehicles using a life-cycle cost analysis based on capital cost, 
running cost, and end-of-life cost. Stone et al. (2012) used the Global Trade Analysis 
Project (GTAP) database in order to analyze the socio-economic impacts of 
transportation projects considering a wide range of socio-economic indicators such as 
contribution to gross domestic product (GDP), income, public welfare, and import.  
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The World Bank’s report on social analysis of transportation projects also revealed 
important insights regarding the significance of socio-economic aspects of 
transportation in terms of employment, road safety, health impacts, and accessibility. 
The World Bank (2006), in a report published by the European Commission, listed 
contribution to GDP, employment, external cost of transportation activities such as 
congestion, emission and safety, taxation, average passenger travel time, and 
affordability as key indicators to assess the socio-economic sustainability aspects of 
transportation activities in the EU member states [100]. As can be seen from the 
reviewed works, the selection of socio-economic indicators shows differences between 
the studies; however, life cycle cost, employment, human health impacts, contribution to 
GDP and public welfare can be seen as commonly used quantitative indicators that are 
addressed. Several other socio-economic indicators including accessibility, affordability, 
equity, travel time, congestion, accident and noise are excluded from the scope of this 
research due to lack of appropriate data for new electric vehicle technologies and 
difficulties in integration with a proposed dynamic life cycle assessment approach. The 
model boundary is presented in Table 4-1 by identifying the most important exogenous, 
endogenous, and excluded variables in the model. Exogenous variables are externally 
defined variables representing behaviors or values that are not within the boundary of 
the model, whereas endogenous variables are calculated based on the interactions and 
mathematical relationships among the variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1 Model boundary 
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  Endogenous variables Exogenous variables Excluded variables 
 T

ra
n

sp
o

rt
at

io
n

 S
u

b
-

m
o

d
el

 
New passenger vehicle sales Vehicle disposal* End-of-life impacts 
Travel need index Market share of vehicles* Recycling and reuse 
Average annual VMT Fuel efficiency of vehicles* Insurance cost 
On-road fuel efficiency*  Other environmental 

impact categories 
Population   
Fertility rate   
Number of potential drivers   
Total number of vehicles on-
road 

  

E
n

vi
ro

n
m

en
ta

l S
u

b
-

m
o

d
el

 

Emissions from vehicle man.* Vehicle man. emission rate  
Emissions from vehicle op.* Petroleum supply emission  
PMF from vehicle man.* Electricity supply emissions  
PMF from vehicle op.* Tail pipe emissions  
POF from vehicle man.* CO2 emissions from rest of US  
POF from vehicle operation* CO2 emissions from rest of US  
Deep Ocean Temp   
Atmos. U. Ocean Temp   
Economic climate damage 
fraction 

  

E
co

n
o

m
ic

 S
u

b
-m

o
d

el
 Annual vehicle operation cost* Battery cost  

Annual vehicle ownership cost* M&R cost  
Gross Domestic Product (GDP) 
contribution of manufacturing 
phase 

Useful life time  

GDP contribution of operation 
phase 

Electricity cost  

GDP increase rate Gasoline cost  
 
 

GDP from rest of the U.S. 
Economy 

 

S
o

ci
al
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u

b
-m
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Human health impacts from 
transportation 

Life expectancy  

Adjusted life expectancy HH characterization factors  
Employment from vehicle op. Max life expectancy  
Employment from vehicle man. Life expectancy norm  
Employment from rest of the 
U.S.  

  

Public welfare   
Education index   
Income index   
Life expectancy index   

* These variables are used for each vehicle type separately and are represented by 
single name in this table. 
 

4.2.3 System conceptualization  

System conceptualization is explained with the causal loop diagram (CLD) and a brief 
description of each loop. The CLD is presented in Figure 4.2 which includes major sub-
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models and the causal relationships among each variable or sub-model. It should be 
noted that the CLD is an overview of the system observed where the complex 
relationships are explained in a simplified form.  
 

 
Figure 4.2 Causal loop diagram of the model 

A typical CLD consists of loops which can be reinforcing (an increasing impact of a 
cause on an effect is an increase) or balancing (an increasing impact of a cause on an 
effect is a decrease). In the proposed SD model, nine balancing and three reinforcing 
loops are considered (See Figure 4.2). In Figure 4.2, positive signs indicate a 
reinforcing effect, whereas the negative signs indicate a balancing relationship. The 
reinforcing and balancing loops are briefly explained as follows: 
 
Balancing Loops 1, 2, and 3 
 

1) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) GDP(+)  Public welfare (+) Passenger vehicle transportation  

2) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) GDP (+) Employment (+) Passenger vehicle transportation 
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3) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) GDP (+) Public welfare (+) Population(+) Passenger vehicle 
transportation 
 

As transport and mobility activities increase, the related GHG emissions increase and 
accelerate climate change. Steeply increasing atmospheric temperature damages 
economy by reducing the growth rate of GDP, which reduces the public welfare through 
change in income status, loss of jobs. In balancing loop 3, any change in public welfare 
influence the population through fertility rates. This impact can be both reinforcing and 
balancing depending on the income level. However, the threshold value for the income 
level for the U.S. is not expected to serve as a balancing effect due to expected income 
level trends in the U.S. Passenger vehicle transportation includes the modules of travel 
need index and number of new vehicle sales, which are functions of employment, 
population, and public welfare. The feedback impacts to the passenger vehicle 
transportation module occur via changes in employment, population, and public welfare.  
 
Balancing Loops 4, 5 and 6 
 

4) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) Human health status(+)Population(+) Passenger vehicle transportation 

5) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) Human health status (+)  Public welfare (+) Passenger vehicle 
transportation  

6) Passenger vehicle transportation (+) GHG emissions (+) Climate Change(-
) Human health status(+)  Public welfare (+) Population(+) Passenger 
vehicle transportation 
 

Climate change has also impact on human health, which effects the population through 
life expectancy. Population increases the travel demand and new vehicle sales, which 
increases the impacts of passenger vehicle transportation in the loop 6. As the human 
health status changes due to GHG emissions resulting from passenger vehicle 
transportation, public welfare status changes accordingly. Public welfare affects the new 
vehicle sales through income level and on population through fertility rates. The loops 
are completed by the impacts of population and public welfare on the passenger public 
transportation.  

Balancing Loops 7, 8 and 9 
 
7) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+)Population(+) Passenger vehicle transportation 
8) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+) Public welfare (+) Passenger vehicle transportation  
9) Passenger vehicle transportation (+) Air pollution(-) Human health 

status(+) Public welfare (+) Population(+) Passenger vehicle transportation 
 

The second environmental impact resulting from passenger vehicle transportation is the 
air pollution, which influences the human health status through life expectancy. Same 
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as in the balancing loops 4, 5, and 6; human health status affects public welfare and 
population, which are connected to passenger vehicle transportation via their effect on 
travel demand and new vehicle sales.  

Reinforcing loops 1, 2, and 3 
 

1) Passenger vehicle transportation (+) Vehicle ownership expenses (+) 
GDP(+)  Public welfare (+) Passenger vehicle transportation  

2) Passenger vehicle transportation(+) Vehicle ownership expenses (+) GDP 
(+) Public welfare (+) Population(+) Passenger vehicle transportation 

3) Passenger vehicle transportation(+) Vehicle ownership expenses (+) GDP 
(+) Employment (+) Passenger vehicle transportation 

As the travel demand and the new vehicle sales increases, the overall expenses related 
to transportation, particularly vehicle ownership costs increase. Increased consumption 
fastens the economic growth through contribution of industrial sectors associated with 
vehicle manufacturing and operation such as petroleum production and supply and 
electric power generation for electric vehicles. On the other hand, the demand shift 
among the sectors would cause a balancing effect as well. However, current trends in 
the transportation sector indicate that this relationship has a reinforcing effect. These 
sectorial outputs change the status of public welfare through income per capita and 
employment. Both public welfare and employment changes the travel demand of people 
and population structure, which change the impacts of the passenger vehicle 
transportation in return. For details of model formulation, refer to the journal paper 
mentioned in the introduction of this section. 
 

4.2.4 Model validation 

Model validation where the accuracy of the model behavior’s is compared to the existing 
system behavior, is a critical phase in SD modeling. There are two types of modeling 
techniques from model validation perspective, namely: causal descriptive and black-box 
[101]. Causal descriptive models consider the feedback loops in model structure and 
question “how real systems operate in some aspects”. On the other hand, only the 
aggregate input-output relationship matters in black-box models, which makes them 
“purely-data driven”. In both type of modeling approaches, statistical techniques are 
typically used for validity tests [102]. 
 
The objective of employing a statistical comparison between SD output and the actual 
data was to validate that there is no statistically significant difference between the 
output of SD model and real data. Therefore, either a parametric (ANOVA) test or a 
non-parametric test (if ANOVA requirements are not met) needed to be used.  
 
Mainly, 9 variable sets are considered to be used in the validation analysis, namely: 1) 
Atmospheric temperature change, 2) New passenger vehicle sales, 3) VMT, 4) 
Population, 5) On-road fuel efficiency of ICVs, 6) GDP, 7) Life expectancy, 8) 
Employment and 9) Public Welfare. The validation step is carried out by looking at the 
actual data and the SD model’s output with two statistical tests: ANOVA and Two 
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Sample Kolmogorov Smirnov. As long as both of the data (model and real) are holding 
the assumptions of the One-Way ANOVA test, ANOVA is used. For the nonparametric 
test, Two Sample Kolmogorov Smirnov, is used for the variables that either of the 
datasets (model or real) does not hold the assumptions of the ANOVA test. ANOVA test 
mainly requires the following criteria: The two data (since there is 2 groups of data: SD 
output and actual data) need to be normal. To understand a data is normal or not, 
normality test is typically used. Normality test aims to find out whether to reject or fail to 
reject the null hypothesis that the data come from a normally distributed population. 
Secondly, there needs to be homogeneity of variance (HOV) on for both of the two 
datasets. HOV is an assumption of the ANOVA that assumes that all groups have the 
same or similar variance. If any of the above requirements (or assumptions) is not met, 
ANOVA cannot be used so that non-parametric tests need to be used. 
 
The statistical analysis is performed using SPSS software. Initially, normality tests are 
performed. According to the analysis results, 7 out of 9 variables were found to be 
holding assumptions of ANOVA test, thus ANOVA is used for comparing the real and 
model’s output data. The only datasets that were not normal were found to be 
associated with 3rd and 5th variables, namely: new passenger vehicle sales and VMT. 
Results of the ANOVA analysis are shown in Table 4-2. It is evident that there is no 
significant different between the model’s output and actual data since all test statistic 
values are greater than the threshold, 0.05. 
 

Table 4-2 Results of the ANOVA analysis 

Variable  
number 

Variable name One Way ANOVA 
F Value Test 

Statistic 
1 Atmospheric temperature change 1.794 0.185 
3 VMT 0.000 0.986 

4 Population 0.528 0.470 
6 GDP 0.000 1.000 
7 Life expectancy 0.170 0.681 
8 Employment 0.000 0.984 
9 Public Welfare 1.374 0.245 

 
The two variables that contain non-normal data are analyzed with Two Sample 
Kolmogorov Smirnov. The results of normality tests (Kolmogorov-Smirnov and Shapiro-
Wilk) are provided in Table 4-3, which indicate that at least one test statistic is less than 
0.05. In Table 4-3, results of non-parametric two samples Kolmogorov Smirnov test are 
provided, which indicate that there is no significant difference between the model’s 
output and the actual data (Asymp. Sig. (2-tailed) > 0.05). 
 
 
 
 

Table 4-3 Results of Normality Tests 
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Tests of Normality: New passenger vehicle sales 

  
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Real Data 0.216 34 0 0.653 34 0
Model Output 0.173 34 0.011 0.711 34 0

a. Lilliefors Significance Correction 

Tests of Normality: On-road fuel efficiency of ICVs 

  

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Actual Data .164 34 .021 .969 34 .436
Model Output .071 34 .200* .966 34 .358
*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 

 
Table 4-4 Results of Two Sample Kolmogorov Smirnov 

Test Statisticsa: New passenger vehicle sales Test Statisticsa: On-road fuel efficiency of ICVs

  VAR00008   VAR00014
Most Extreme 
Differences 

Absolute .182 Most Extreme 
Differences 

Absolute .324
Positive .091 Positive .324
Negative -.182 Negative -.088

Kolmogorov-Smirnov Z .739 Kolmogorov-Smirnov Z 1.334
Asymp. Sig. (2-tailed) .646 Asymp. Sig. (2-tailed) .057

a. Grouping Variable: New passenger vehicle 
sales 

a. Grouping Variable: On-road fuel efficiency 
of ICVs 

 

4.2.5 Scenario based comparison of each vehicle type  

The comparisons of vehicle types are made according to extreme market share 
scenarios for each vehicle as 100% market share by 2050. Market share represents an 
annual percentage of new vehicle sales. These market share scenarios are presented 
in Table 4-5. These extreme scenarios are compared with the forecasts of the VISION 
model, developed by the U.S. Department of Energy [103]. The rationale behind the 
selection of ambitious market share target for each vehicle is to capture the effect of all 
system and reveal the maximum available sustainability impacts from each vehicle type. 
For instance, if HEVs are sold with a high rate market share, the number of new vehicle 
sales, population, economic parameters, etc. will be different in the future years 
depending on the impact of HEVs. Hence, both the maximum potential in the terms of 
sustainability impacts and the effects of the system parameters are captured. Therefore, 
the scenario-based comparison provides a more comprehensive comparison between 
alternatives by considering the behavior of other sub-systems and parameters 
depending on the vehicle selection as they have causal relationships. This is a better 
comparison for such macro-level studies since the impacts of the vehicle types are 
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revealed as much as possible by considering a wider system and a deeper mechanism. 
The results are presented for each scenario in the following section.  
 

Table 4-5 Summary of the extreme scenarios 

Scenario 
name 

Year Market share of new vehicle sales 

ICV HEV PHEV EV 

BAU 2010 95.8% 4.2% 0.005% 0.001% 
2015 93.7% 5.7% 0.584% 0.001% 
2020 91.6% 7.2% 1.164% 0.001% 
2030 87.6% 9.5% 2.924% 0.001% 
2040 85.7% 10.3% 3.969% 0.001% 
2050 84.0% 10.8% 5.217% 0.001% 

S-HEV 2010 95.8% 4.2% 0.005% 0.001% 
2015 93.7% 5.7% 0.584% 0.001% 
2020 80.3% 19.2% 0.501% 0.001% 
2030 53.5% 46.1% 0.334% 0.001% 
2040 26.8% 73.1% 0.167% 0.001% 
2050 0.0% 100.0% 0.000% 0.001% 

S-PHEV 2010 95.8% 4.2% 0.005% 0.001% 
2020 93.7% 5.7% 0.584% 0.001% 
2016 80.3% 4.9% 14.786% 0.000% 
2030 53.5% 3.3% 43.191% 0.000% 
2040 26.8% 1.6% 71.595% 0.000% 
2050 0.0% 0.0% 100.0% 0.000% 

S-EV 2010 95.8% 4.2% 0.005% 0.001% 
2020 93.7% 5.7% 0.584% 0.001% 
2016 80.3% 4.9% 0.501% 14.287% 
2030 53.5% 3.3% 0.334% 42.858% 
2040 26.8% 1.6% 0.167% 71.429% 
2050 0.0% 0.0% 0.0% 100% 

 
 
4.3 Results and discussion 

Results are presented in three sub-sections: environmental impacts, economic impacts, 
and social impacts. 
 

4.3.1 Environmental impacts 

Figure 4.3 shows the CO2 emissions impacts for each scenario compared the BAU 
scenario. Manufacturing impacts of S-EV and S-PHEV are relatively higher compared to 
other scenarios, which is mainly because of emissions from additional battery 
manufacturing for EVs and PHEVs. On the other hand, for the CO2 emissions revealed 
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in the operation phase, the EVs are found to be the best option followed by the PHEVs. 
When total life cycle impacts are considered, the emission savings overwhelms the 
impacts of manufacturing phase in the operation phase and favor S-EV and S-PHEV. 
Considering that the battery improvements and associated impacts are taken into 
account, the technological advance in battery technology favors EVs and PHEVs, while 
fuel efficiency improvements favor all of the vehicles at different degrees. BAU scenario, 
which contains much higher number of ICVs, has a declining trend due to fuel efficiency 
improvements of ICVs.   
 

 
Figure 4.3 CO2 emissions from vehicle transportation a) Manufacturing Phase, b) 

Operation Phase, c) Total Life Cycle Emissions 

 
PMF impacts of vehicle options are presented in Figure 4.4. PMF impacts have similar 
trends with those of CO2 emissions in both of the phases. However, when total life cycle 
PMF emissions are revealed, the trend is different due to differences in scale between 
manufacturing and operation phase. PMF of S-EV is highest in the manufacturing 
phase, whereas it is lowest during the operation phase. PMF of S-PHEV is very close to 
that of S-EV in the operation phase. The effect of manufacturing phase is quite 

	

200

250

300

350

400

450

500

550

600

650

700

1980 1990 2000 2010 2020 2030 2040 2050

M
ill
io
n	
to
nC
O
2

b)

20

40

60

80

100

120

140

1980 1990 2000 2010 2020 2030 2040 2050

M
ill
io
n	
to
nC
O
2

a)

300

400

500

600

700

800

1980 1990 2000 2010 2020 2030 2040 2050

M
ill
io
n	
to
nC
O
2

c)

BAU S‐HEV S‐PHEV S‐EV



 53

influential as it changes the total life cycle PMF trend significantly. The increasing trend 
of manufacturing phase PMF overwhelm the reduced PMF of operation phase for a 
period of time at the beginning of 2016. There is a decreasing trend between 2017 and 
2035 and later this trend is reversed due to relatively less reduction in operation phase 
compared to sharp increase in manufacturing phase.  
 

 
Figure 4.4 PMF from vehicle transportation a) Manufacturing Phase, b) Operation 

Phase, c) Total Life Cycle  

Figure 4.5 shows the POF impacts of vehicle options. The trend of manufacturing phase 
is similar to that of PMF and CO2 emissions. S-EV performs the worst in manufacturing 
phase, while it has the second least POF emissions in operation phase. POF impacts of 
PHEVs are least in the operation phase competed to other vehicles. When these two 
phases are combined the HEVs are found to be best alternative due to overwhelming 
manufacturing impacts of PHEVs. EVs can be considered as the worst option for POF 
impacts since their manufacturing impacts are much more than their saving potential in 
operation phase. Hence, their total life cycle impacts are worse than the BAU case. 
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Overall, HEVs and PHEVs are found to be better options to reduce POF impacts from 
transportation. 
 
 

 
Figure 4.5 POF from vehicle transportation a) Manufacturing Phase, b) Operation 

Phase, c) Total Life Cycle  

The rest of the environmental indicators such as atmospheric temperature change and 
the total CO2 emissions are not shown in figures due to negligible changes resulted from 
each scenario. Basically, the overall climate system is much larger than the U.S. 
transportation sector’s size in the terms of emission contributions. Therefore, changes in 
transportation sector by using different type of vehicles do not affect the atmospheric 
temperature significantly. Reducing the atmospheric climate change requires much 
more ambitious targets and international collaborative efforts. The U.S. transportation 
sector, alone, cannot reduce the rapidly increasing atmospheric temperature and the 
negative impacts of the global climate change. 
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4.3.2 Economic Impacts 

Economic impacts are evaluated according to vehicle ownership costs to drivers and 
overall contribution to U.S. GDP. Figure 4.6 shows the vehicle ownership costs during 
the operation phase and the total life cycle ownership costs. As shown in Figure 4.6, 
both operation and total life cycle ownership costs have a decreasing trend, which are 
sharper for the EVs owing to improvement in battery technologies and lower initial 
costs. Currently, the total life cycle ownership cost of HEVs is slightly lower than the 
ICVs. Operation phase costs are lowers for PHEVs until 2028 where EVs became the 
most favorable option afterwards. Another interesting result is that the total life cycle 
cost of ICVs became as low as PHEVs and slightly lowers than HEVs in 2050 thanks to 
fuel efficiency improvements. While the cost difference is much larger in early years 
when the EVs are introduced to the market, the cost difference becomes smaller after 
2030.  
 

 
Figure 4.6 Annual vehicle ownership costs a) Operation Phase, b) Total Life Cycle  

Figure 4.7 shows the contribution of each life cycle phase to the U.S. GDP for each 
scenario. GDP contribution in manufacturing phase is dominated by S-EV and S-PHEV. 
All of the vehicle scenarios have an increasing trend due to increased consumption. 
While economic sizes of manufacturing and operation phases are similar in the early 
years, the contribution of manufacturing phase becomes higher as the vehicle 
performances increase towards 2050. Operation phase contribution have increasing 
and stable trend for BAU case and S-HEV, whereas the contributions S-PHEV and S-
EV decrease. Because, increasing VMT trend stimulated the contribution of HEVs and 
ICVs, while it could not overwhelm the effect of improved fuel efficiency and batteries for 
PHEVs and EVs. These improvements pave the way for reduced consumption and less 
contribution to GDP within the transportation sector for PHEVs and BEVs. The total life 
cycle contribution of PHEVs and EVs are larger than those of ICVs and HEVs until 2025 
and 2030, respectively. The contribution of HEVs became the slightly greater in 2050 
with an increasing trend since they are introduced to the market. Overall, all of the 
scenarios indicated similar trend for total life cycle.  
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Figure 4.7 Contribution to GDP a) Manufacturing Phase, b) Operation Phase, c) Total 

Life Cycle  

4.3.3 Social Impacts 

The indicators of employment and human health represent social impacts. Employment 
contribution of each life cycle phase and vehicles are presented in Figure 4.8. 
Employment is very similar to contribution to GDP as they have historically strong 
correlation. Manufacturing phases of PHEVs and EVs have the greatest contribution to 
employment. Manufacturing phases of all of the vehicle types have increasing trends as 
the size of the transportation sector grows with the increasing vehicle demand. On the 
other hand, only employment contribution of ICVs, defined under BAU scenario, has an 
increasing trend in operation phase, whereas rest of the vehicle types are either stable 
or decreasing due to transformation by the more technology oriented sectors (increased 
productivity) and reduced consumption. The total life cycle employment trends have 
slightly fluctuating structure where newly introduced technologies create more 



 57

employment at the beginning and reach a stable increase rate afterwards. Overall, the 
total life cycle employment contribution of S-HEVs and S-ICV are more stable and 
increases with almost a constant slope mainly due to increased travel demand and 
developments in the associated sectors. The total life cycle contributions indicated that 
all of the scenarios have similar trend and contribution in long-run.  
 

 
Figure 4.8 Contribution to employment a) Manufacturing Phase, b) Operation Phase, c) 

Total Life Cycle 

Human health impacts resulting from PMF, POF, and the global warming are presented 
in Figure 4.9. The human health impacts in manufacturing phase are much smaller than 
the operation phase in general. However, as the fuel efficiency and battery technologies 
improved the relative impacts of operation phase become smaller. Human health 
impacts in manufacturing phase are dominated by EVs and PHEVs and have an 
increasing trend over time. In the operation phase, impacts are least for these two 
vehicle types. Because manufacturing impacts are smaller compared to operation 
phase impacts, the human health impact potential of EVs, and PHEVs in operation 
phase dominated the total life cycle impacts and favored these two vehicle types. One 
of the important effects is that the exposure rate of PM10 is much less in manufacturing 
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facilities compared to PM10 exposure in operation phase of these two vehicles. BAU 
case indicates that the total life cycle human health impacts have a decreasing trend, 
which can be fasten with adoption of EVs and PHEVs. 
 

 
Figure 4.9 Human health impacts a) Manufacturing Phase, b) Operation Phase, c) Total 

Life Cycle  

The use of different vehicle types has a small impact on public welfare, which is a 
function of income, education, and life expectancy indexes. Therefore, the effect of each 
scenario was not presented in a separated figure. The main reason of this insignificant 
impact is that the determinants of public welfare do not change significantly as the 
vehicle preference changes. The effects of vehicle choices on income, education, and 
life expectancy indexes are very small and geometric average of these indexes are 
even smaller. However, small changes in public welfare can lead greater changes in 
society. In fact, there are threshold values for such indices, which can have more impact 
than expected. For example, while a minor decrease for income index in the span 
above the threshold value may not disturb the society, same minor decrease may cause 
much greater disturbance in society when it brings the income index above the 



 59

threshold value. Therefore, a small measure can be very important in some case. 
Overall, all of the alternative vehicle scenarios contribute public welfare more than the 
BAU case. The contribution of S-HEV and S-PHEV is slightly more than that of S-EV. 
As stated previously, public welfare is a function of life expectancy index, education 
index, and income index. Over all, S-EV performed best in the life expectancy index, 
whereas S-HEV and S-PHEV are found to be better for education index and income 
indexes, with slightly higher rate for S-HEV.  
 

4.3.4 Impact of feedbacks from causal loops    

The results for social, environmental, and economic impacts are given in an aggregate 
form of trends without specifying the impacts of feedbacks and demonstrating the 
benefits of SD modeling clearly.  Although the assumptions associated with battery and 
fuel efficiency improvements, emission rates at manufacturing facilities, and energy 
sources play important role in the results, the behavior of the model is also highly 
influenced by the trend of exogenous variables such as the expected economic growth 
in the rest of the economy, expected life expectancy for the U.S., etc. In addition to 
these two major determinants, there are effects resulting from the causal loop 
relationships at different degrees. The results presented are aggregated impacts stem 
from accumulation of all of these three major mechanisms (assumptions, exogenous 
effects, and feedback effects). Affects resulted from the causal loops (feedbacks) are 
shown explicitly to give a better overview of the benefits of the SD modeling.  
 
Considering that all of the loops (reinforcing and balancing loops) are connected with 
the transportation sub-model as a central component of the system (please see Figure 
4.2 and causal loop identification), it is selected as a major domain to show the 
differences stemming from the effects of loops. The transportation sub-model is 
represented by two major parameters: the travelled distance and number of new vehicle 
sales. These two parameters are functions of population, number of drivers, income 
index, public welfare, and employment. Hence, changes in these parameters effects the 
number of new vehicle sales and distance traveled by the on-road vehicles in following 
years. The differences in travelled distance (in kilometers), and the number of new 
vehicle sales are revealed for each scenario. These changes in the selected parameters 
indicate the effects of feedbacks accumulated as a result of 9 balancing and 3 
reinforcing loops. For instance, S-EV has a feedback through all of these loops to itself 
since the VMT and number of new vehicle sales will be different for the future years as 
a result of its impact in previous years.  One of the balancing loops shown below can be 
a good example of it. Once the market share of HEVs gradually increases, the GHG 
emissions associated with public transportation will be less than the BAU. So, the 
climate change impacts will be relatively less on GDP due to lower temperature 
increase as opposed to BAU case. Hence, less impacted economy will be able to 
preserve more employment compared to BAU case, which will result in more vehicle 
travel.   
 
Passenger vehicle transportation (+) GHG emissions (+) Climate Change (-) 
GDP (+) Employment (+) Passenger vehicle transportation 
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Thus, accumulation of all of these previously defined loops changes vehicle travel and 
number of new vehicle sales. Table 4-6 shows the accumulated differences between 
BAU scenario and the other scenarios during the time between 2015 and 2050. For 
instance, applying S-HEV results in 689,930 more vehicle sales than the estimated 
vehicle sales in the BAU scenario. Similarly, S-HEV causes 88,240 million kilometers 
more travel than it is in BAU scenario. These differences stem from the accumulated 
effects of the causal loops throughout time. The additional vehicle sales and travel will 
cause more environmental, social, and economic impacts than what can be estimated 
by traditional modeling approaches. 
 
Table 4-6 The differences in key parameters due to feedback effects between 2015 and 

2050. 

Parameters S-HEV S-PHEV S-EV 
Number of new vehicle sales 689,930 1,330,390 1,732,120 
Vehicle travel (million km) 88,240 130,115 156,718 
 
According to these results, S-EV has the highest nominal difference compared to BAU 
scenario as it causes the highest additional number of new vehicle sales and vehicle 
travel. As these impacts are the result from the feedbacks of each loop, it is also 
important to identify the share of each loop in the terms of their degree of impacts 
compared to one another. Unfortunately, it wasn’t possible to track impacts of each loop 
and distinguish their impacts. Analysis results revealed that the magnitude of these 
effects is relatively much smaller than the direct impacts such as exogenous trend of 
economy and population. These feedback impacts did not cause a regime change in the 
behavior of the indicators. The main reason is that the transportation system is a small 
component in the terms of indicators quantified in this work. Therefore, the trends of 
exogenous variables dominate the overall system. On the other hand, this doesn’t mean 
that the feedback impacts should be neglected. Although this work didn’t experience 
such a regime change due to feedback impacts, there might be cases where the 
behavior changes significantly as a result of feedbacks.   
 
4.4 Conclusion 

This research is an important attempt towards advancing the state-of-the-art in LCSA 
framework and state-of-practice of transportation sustainability. One of the main 
conclusions is inclusion of dynamic interactions among the sustainability indicators, as 
wells as the system of interest. This approach can be critical to deepen the existing 
LCSA framework and go beyond the current LCSA understanding, which provides a 
snapshot analysis with an isolated view of all pillars of sustainability. One of the main 
advantages of this approach is its ability to provide a more comprehensive and in-depth 
analysis as an integrated dynamic LCSA framework, in which the product (alternative 
vehicles) are assessed considering the environment surrounding it and the interrelations 
among its sustainability impacts. Some of the important results and general remarks are 
summarized as follows: 
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 The impacts from feedbacks are relatively smaller compared to effects of exogenous 
variables such as GDP growth of the entire economy, population growth, etc.  Thus, 
sustainability impacts of products highly depend on its surrounding environment as it 
is clearly shown in this study. Therefore, when assessing triple bottom line impacts 
of any product, the system surrounding it should be taken into consideration.  

 Among the tested scenarios, S-EV had the highest effect resulting from the feedback 
loops. It should be noted that the feedback impacts resulted from 9 reinforcing and 3 
balancing loops, indicating a reverse impact and cancel one another depending on 
their impact scale. This behavior can be different in other systems, which might 
result in much greater feedback impacts if one of the loops dominates the others 
(reinforcing or balancing). Hence, when assessing life cycle sustainability impacts of 
products, these feedback relationships should be taken into consideration.  

 Analysis results revealed that vehicle choice affects the public welfare at small scale. 
Exogenous determinants of public welfare, life expectancy, income, and education 
overwhelm the effects of vehicle choice. Considering that public welfare is one of the 
major indicators that society cares about, small variations in that regard may lead to 
significant changes in society and may greatly affect the overall behavior of the 
system. Therefore, assessing sustainability impacts of products, systems, or 
processes should overarch set of social indicators and give insights about possible 
changes may be resulting from it.  

 BEVs are mostly found to be the best option in the CO2 emissions category. 
However, they did not perform well in the impact categories of PMF and POF. PMF 
impacts should be considered along with their health impacts since PMF is more 
important in the operation phase due to the higher exposure rates. Because BEVs 
have less tailpipe emissions, the BEVs have the greatest potential on reducing 
human health impacts due to air pollution.  

 While environmental impacts of BEVs are the highest in the manufacturing phase 
compared to manufacturing phase impacts of other vehicle options, the operation 
phase CO2 emissions and PMF and BEVs are found the be the least. It is important 
to note that these results highly depend on the emission factors at manufacturing 
facilities. Improvement in emission control systems in vehicle manufacturing facilities 
can change the amount of emissions significantly. However, the relative 
performance of BEVs depends on the improvements in battery technology as well as 
the environmental impacts during battery production since the emission difference 
between ICVs and BEVs as well as PHEVs stem from the additional battery 
manufacturing.  

 The analysis results revealed that even though the entire U.S. automobile stock was 
replaced with BEVs, it would have a negligible impact on slowing down to rapidly 
increasing atmospheric temperature, which would normally take place regardless the 
substitution of the entire U.S. automobile stock with BEVs. Hence, more ambitious 
and international efforts are crucial to reverse or slow down the increasing 
atmospheric temperature. Especially, promoting renewable energy sources and 
stringent emission control policies are crucially important to slow down rising global 
temperature.  



 62

 GDP and employment contributions of each scenario are more or less similar. 
Although there are temporal variations throughout time, the overall behavior 
indicates that GDP and employment contribution of all of the vehicle types are 
similar. Vehicle ownership costs of BEVs are found to be more until 2030, and 
become the best option afterwards.  

 
There is a strong need for robust simulation models that would allow us to consider 
dynamic complexity and deep uncertainty to mainly understand, not just predict, 
possible future scenarios. Most decisions related to transportation sustainability have to 
be made in deeply uncertain situations, where the relationships among the main factors 
of the system, the probability distribution of these varying factors, and the plausible 
alternative outcomes are inherently complex and uncertain. While the approach 
presented in this study provides important insights to understand the dynamic 
complexity and the system as a whole, the model needs certain improvements to 
account for uncertainties associated with fuel economy, emission rates, driving 
behavior, spatial variations, etc. In this regard, Exploratory Modeling and Analysis 
(EMA) should be integrated with the proposed model to account for these uncertainties 
as well as to explore a range of plausible future scenarios and gain insights regarding 
the possible outcomes. Hence, the next step will be to integration of EMA approach to 
strengthen the robustness of the model and to deal with the inherent uncertainty of the 
transportation system. 
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5.0 Development of a regional market penetration model for electric 
vehicles 

5.1 Introduction 

5.1.1 Introduction and Scope of Work 

By diversifying the fuel mix of the U.S. transportation sector, the electric vehicle industry 
helps to increase energy security and reduce dependence on petroleum.3 Moreover, the 
transportation industry has an enormous effect on greenhouse gas (GHG) emissions, 
and is responsible for 27% of all GHG emissions in the U.S. as of 2013 [104]. Although 
Internal Combustion Engine Vehicles (ICV) replaced electrified transportation by 1930, 
Electric Vehicles (EVs) have been around for more than 100 years. The EV market 
shares have greatly increased in recent years due to energy insecurity concerns, the 
increasing trends in oil prices, improvements in electrical power storage [105], and 
electricity’s current status as the cheapest and most efficient energy source for the 
transportation sector in the foreseeable future [106]. Governments are now embracing 
the development of EVs on the road by setting goals to improve the EV industry. 
Although the Obama administration has backed off of its goal of one million electric 
vehicles on the road by 2015 [107], others have set a goal of an EV share of 20% in the 
U.S. transportation new sales fleet by 2030 [108]. There are also some goals in the 
state level such as California’s Zero Emissions Vehicle (ZEV) mandate [109]. The U.S. 
Government now offers financial incentives to consumers to lower first-time costs, 
offering up to $7,500 in tax credits for EVs purchased in or after 2010; this incentive will 
be phased out after 200,000 vehicles from the qualified manufacturers [110].  
 
Furthermore, the U.S. Government also supports research and development for new 
technologies to accommodate the movement towards a more electrified vehicle fleet. 
Additionally, significant cost reductions for EV components such as batteries have 
further stimulated this market share growth. However, despite all of these efforts and 
the current collective movement to facilitate the electrification of the U.S. transportation 
fleet, there are still barriers hindering the widespread adoption of EVs as a viable 
transportation option, including various technological, financial, market, and policy 
challenges to the full deployment of EVs. The United States currently has the largest 
number of electric vehicles on the road, with almost 43 percent of all EVs sold in the 
U.S. However, EVs only comprised less than 1% of new car sales in the U.S. as of 2014 
[111]. Therefore, greater adoption rates must be met in order to achieve the mid-term 
and long-term market share goals for EVs as described previously [112]. In light of 
these challenges, it is increasingly necessary to study EV market shares in more detail. 
Market forecasting is currently a well-developed and well-studied field with implications 

                                                 
3 The contents of this section were partly published in Noori, M., and Tatari, O. (2016). “Development 
of an agent-based model for regional market penetration projections of electric vehicles in the United 
States.” Energy, Elsevier, 96(2016), 215-230, 2014 IF: 4.844. DOI: 10.1016/j.energy.2015.12.018 
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in various other fields (economics, business, finance, systems engineering, etc.), but 
often fails to consider uncertainties in the different factors affecting market shares. For 
this reason, market evaluations of new EV technologies is facing increasing degrees of 
complexity due to difficulty in modeling the relevant system factors [113].  
 
The aim of this work is to study the market penetration of EVs considering the inherent 
uncertainties involved. To this end, the purchase prices, maintenance and refueling 
(M&R) costs, environmental damage costs (EDC), and water footprints (WFP) of the 
studied vehicle types are estimated, considering their respective uncertainty ranges. 
Next, an agent-based model (ABM) is developed to simulate the market penetration of 
EVs in the U.S. Finally, different scenarios are applied via the Exploratory Modeling and 
Analysis (EMA) approach, and the most plausible outcome of this method is analyzed 
as needed. Five different vehicle types are compared and analyzed: Internal 
Combustion Engine Vehicles (ICVs), Gasoline Hybrid Electric Vehicles (HEVs), 
Gasoline Plug-in Hybrid Electric Vehicles (PHEVs), Gasoline Extended-Range Electric 
Vehicles (EREVs), and All-Electric Vehicles a.k.a. Battery Electric Vehicles (BEVs). For 
the purposes of this study, it is assumed that PHEVs and EREVs have all-electric range 
of 10 miles and 40 miles, respectively. 
 
This work distinguishes itself from previous efforts in several ways. First, the previously 
developed Electric Vehicle Regional Optimizer (EVRO) is used to estimate the M&R 
cost, the EDC, and the WFP of the studied drive-train. The analysis also considers all of 
the possible uncertainties of the life cycle cost (LCC), EDC, and WFP analyses to 
account for all applicable EV characteristics. Second, although some efforts have been 
made to develop a market share model to simulate the market penetration of EVs in the 
U.S., most of these efforts have considered an average U.S. electricity grid mix in their 
respective analyses, while this study considers 22 different electric grid regions and 
analyses the adoption rate of EVs in each region separately. Finally, an agent-based 
model (ABM) is developed in conjunction with the Exploratory Modeling and Analysis 
(EMA) method to integrate the relevant uncertainties into the market share of EVs in the 
year 2030.  
 

5.1.2 Life Cycle Analysis, Agent Based Modeling, and Market Penetration 
of Electric Vehicles 

Life Cycle Assessments of EVs have been extensively studied in today’s literature. For 
instance, in one of the most recent publications from the University of Central Florida, a 
state-based carbon and energy footprint analysis was performed for conventional, 
hybrid, plug-in hybrid, and electric vehicles [96]. Moreover, The Union of Concerned 
Scientists published an informative report that investigated emissions from charging 
electric vehicles on a regional scale, including upstream emissions from building power 
plants, extracting and transporting fuel, converting fuel into electricity, and delivering 
electricity to the point of use [114]. In addition, Viñoles-Cebolla et al. developed an 
integrated model to estimate the life cycle emissions of different vehicles using primary 
vehicle data such as weight, engine technology, and fuel type [115]. Moreover, Zhang et 
al. proposed a simulation model to analyze the economic and environmental 
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performance of EVs, testing different conditions such as the electricity generation mix, 
smart charging control strategies, and real-time pricing mechanisms [116].  
 
Agent-based modeling (ABM) is a simulation method that creates a virtual environment 
to model the interactions between different agents. ABM is previously used to model 
vehicle technology adoption, with different agents (consumers, automakers, policy 
makers, fuel suppliers, etc.) interacting in a virtual environment. For instance, Cui et al. 
developed a multi agent-based framework for the spatial distribution of PHEV 
ownerships at local residential household level [117]. In addition, Eppstein et al. 
developed a spatial explicit ABM to study market penetration of PHEVs and concluded 
temporary rebates have only short-term impacts on market share and gas prices must 
rise for a higher penetration rate [118]. Consumers are the primary agents in some 
aspect of the vehicle technology adoption portrayed with the ABM method, whereas 
more current models have expanded this environment by considering automakers, 
policy makers, and fuel suppliers as agents as well. One of the more advanced ABM for 
evaluating the market share of EVs is the Virtual Automotive Market Place Model 
(acronym VAMPM) developed by the University of Michigan Transportation Research 
Institute (UMTRI) [119]. This model characterizes the market share of new technologies 
in a hypothetical “neighborhood” under different consumer, economic, and policy 
conditions, and considers four different agent types: consumers, governments, fuel 
producers, and vehicle producers/dealers. The unit cycle of the analysis is one month, 
and the agents communicate in each cycle based on their needs and benefits. The 
results indicate that, by 2015, sales of PHEVs could reach up to 3%. By 2020, sales 
could potentially reach up to 5 % and up to 20% in 30 years, with a final market 
penetration of 16% by 2040. One of the advantages of the ABM method is its ability to 
use both hypothetical and data-driven consumer behavior during the modeling process 
[113].  
 
Most of the agent-based models in current literature were developed based on utility 
theory, in which the agent purchases a vehicle that maximizes his/her utility. For 
instance, Ting Zhang et al. proposed a novel ABM methodology to investigate factors 
that can facilitate the penetration of the alternative fuel technologies into the market 
[120], considering four different agents in their analysis: manufacturers, vehicles, 
consumers, and governments. The mathematical content of abovementioned study is 
now used as a basis for the formulation of the developed ABM in this research. 
Moreover, a consumer choice probability model is developed for evaluating the market 
share of EVs in Iceland by Shafiei et al. [121], with consumers weighing different vehicle 
attributes based on their own specific preferences. The mathematical content of the 
consumer choice model is also used to form the developed ABM in this analysis. The 
mathematical content of the developed Electric Vehicle Regional Market Penetration 
(EVReMP) Model is described in the next section. 
 
5.2 Methods 

First, the developed Electric Vehicle Regional Market Penetration (EVReMP) model and 
its relationships to other parts of the methodology are illustrated (See Figure 5.1). 
Second, a summary of the previously developed Electric Vehicle Regional Optimizer 
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(ERVO) is explained. Third, the concept of Exploratory Modeling and Analysis (EMA) 
and the mathematical content of the agent-based model (ABM) developed in this study 
are explained. Fourth, we present the inherent uncertainties in the purchase prices, 
maintenance and refueling costs, and water footprints of the studied vehicles as 
applicable. In short, the EVReMP model is a combination of several different 
methodologies that will enable decision-makers to see what the market penetration of 
the studied drivetrain would be in the year 2030. 

 

Figure 5.1 Illustration of the EVReMP model 

5.2.1 Electric Vehicle Regional Optimizer (EVRO) 

EVRO is an optimization model previously developed by the authors [94] that uses 
several previously established methodologies in Life Cycle Assessment of energy 
systems [122,123], Multi Criteria Decision Making [13,124], Decision Making Under 
Uncertainty [125], Intelligence Transpiration Systems [126,127] and Stochastic 
Optimization [64,128]. It also builds on the Argonne National Lab’s Alternative Fuel Life-
Cycle Environmental and Economic Transportation (AFLEET) model [129] to estimate 
the life cycle cost (LCC) and life cycle environmental emissions (LCEE) of the studied 
vehicle types. The environmental damage cost (EDC) is taken into the account, 
including the costs associated with the mitigation of GHG and local air pollutant 
emissions. The water footprint (WFP) of the studied drivetrain is also estimated in the 
EVRO model, considering the first-tier and higher-tier withdrawals of petroleum 
extraction and/or electricity generation. Finally, an optimization model is coupled with 
the concept of Exploratory Modeling and Analysis, and is subsequently applied to the 
estimated LCCs, EDCs, and WFPs of the studied drivetrain to find the optimal drivetrain 
combination for the year 2030. Here, the EVReMP model builds on the EVRO model to 
estimate the maintenance and refueling costs, EDCs, and WFPs of each of the studied 
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vehicles. It is worth noting that the EVRO model considers different uncertainty factors 
in order to evaluate the attributes of each vehicle type. The overall range of each 
uncertainty factor in the EVRO model was taken from publicly available data. 
 

5.2.2 Exploratory Modeling and Analysis 

Most predictive models are designed so that known facts are consolidated to create a 
“best estimate” model. Such models are claimed to be an accurate case of that portion 
of the real world, but in reality they can only be considered valid when there is adequate 
useful data of sufficient quality so that model designers can use empirical data to 
validate the model. This validation process is only possible when the situation is 
observable or measurable, the structure of the problem is constant over time, and 
sufficient data can be collected [130,131]; for many systems, however, these conditions 
are not met. Scientists use different terms to express such situations, and subsequent 
predictions under such conditions are largely rejected as wrong, bad, or useless [130–
134]. On the other hand, our actions today affect the future behavior of the system. The 
degree of uncertainty with respect to the behavior of the system is directly proportional 
to the level of interaction among economic, social, environmental, and technological 
factors, and decision making with high levels of interaction involved in the system is said 
to be under deep (or severe) uncertainty [135–138]. This situation occurs when the 
overall relationships among the main components are the system cannot be agreed on 
by decision makers, when the probability distribution of these factors is uncertain, 
and/or when the most plausible outcome is not precisely predictable [139]. Uncertain 
aspects of these systems include the initial inputs of the system, the relationships 
among the parameters in the model, the logic associated with these interactions, the 
system boundaries, the model structure, and the difference between the real behavior of 
the system and the estimation presented in the model. 

With all of this in mind, The Exploratory Modeling and Analysis (EMA) method is used to 
model the behavior of the system in this situation, Exploratory Modeling and Analysis is 
being used. The EMA methodology evaluates the behavior of the system under deep 
uncertainty, and is based on the prominent work of Bankes [140,141]. More specifically, 
the EMA method works by forming an ensemble of plausible outcomes using 
computational experiments based on available knowledge and data, and then using this 
set of plausible outcomes as a surrogate to predict the behavior of the system. In fact, 
instead of building one model and verifying it as a representation of the system, the 
EMA method creates an ensemble of models and explores the implications of these 
models [130]. By conducting such experiments, one can explore which of the 
determined plausible outcomes are more likely to occur given the system’s behavior. 
Although the EMA methodology is relatively new and still under development, it has 
already been applied to a wide variety of disciplines and research topics, including 
climate change, production planning, economic analysis, healthcare, sustainable 
development, and transportation [128,139,141–145]. 

In this research, the EMA method is used to evaluate all of the plausible outcomes of 
the developed ABM. This integration of the EMA and ABM methodologies thereby 
enables decision-makers to generate, explore, and deeply analyze a large number of 
plausible future outcomes, allowing them to better understand the effect(s) of current 
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uncertainties on the future market shares of electric vehicles. The required steps to 
apply the concept of EMA to a deeply uncertain problem are as follows [146,147]: 

1. Conceptualize the policy problem, 
2. Specify the relevant uncertainties, 
3. Develop an easily controllable computational model of the system’s behavior, 
4. Generate numerous plausible future outcomes as needed, 
5. Perform a data analysis with respect to the generated outcome(s), and 
6. Use the finalized model to define and test different policies as desired. 

These steps are taken into account while using EMA in this effort. One of the goals of 
this study is to apply the concept of Exploratory Modeling and Analysis (EMA) to the 
developed ABM model to account for the inherent uncertainty levels of the system. In 
one study by Kwakkel and Yücel, EMA is applied to a developed ABM model in the 
case of Dutch electricity transition [130], exploring plausible transition trajectories and 
their conditions for occurring. 

5.2.3 Agent-Based Modeling 

An Agent-Based Model (ABM) is used to evaluate consumer behavior and to estimate 
the market penetration of the studied drivetrain. Four different agents (consumers, 
regions, governments, and vehicles) are considered in this model. Consumers seek to 
purchase a vehicle, maximizing the utility of the vehicle(s) in question. Governmental 
policies can affect consumer behavior in various ways, depending on the implications of 
each specific policy and/or set of policies. Vehicle attributes are derived from the EVRO 
model, with the EVRO analysis performed for each U.S. electric grid region. Details of 
the model can be found in the published paper. 
 

5.2.4 Assumptions and Preliminary Data 

Table 5-1 summarizes the uncertainty ranges considered in the EVRO model, assuming 
that all uncertain parameters are uniformly distributed between their respective lower 
and upper limits. The only exceptions to this assumption are the price(s) of electricity 
and/or gas, which are selected through a rectangular random function.  

How often an agent purchases a vehicle depends on his/her social group. Therefore, 
different social groups are defined, and each agent is randomly assigned to a social 
group. The level of income the agent is then randomly selected among the pre-set 
income levels, and the purchase probability for each social category is estimated as 
summarized in Table 5-2 for different social and income categories. In 2014, 7.9 million 
passenger cars were sold in U.S., meaning that approximately 2.5 percent of Americans 
purchase a passenger car each year [154]. The vehicle purchase probabilities of each 
social group are taken from [121,155].  Since the data in both of these reports are 
based on different total populations (Iceland and Denmark, respectively), this study 
uses a scaled social group probability based on a purchasing rate of 2.5% in the U.S. 
(Table 5-2). 
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Table 5-1 Model Parameters in EVRO Model 

Parameter Source Range 

Analysis Period [148] 2015-2030 

Discount Rate [149] 0.65-1.15 

Inflation Rate [150] -10% , +10% of CBO’s projections 

Fuel Economy [151] 
EIA’s projected mpg for light duty 
vehicles & AFLEET 

Vehicle Miles Traveled (VMT) [151] -10% , +10% of EIA’s projections 

Electricity Price [152] EIA & proposed methodology in EVRO 

Gasoline Price [151,153] EIA & proposed methodology in EVRO 

EDC Existing literature Proposed methodology in EVRO 

WFP of Fuels Existing literature Proposed methodology in EVRO 

 
Table 5-2 Scaled Probability of Purchase 

Social groups Probability of Purchase

 Low income Medium income High income 

Single female 0.4% 1.2% 4.8% 

Single male 0.6% 1.9% 10.1% 

Female living w. parents 0.6% 3.9% 7.8% 

Male living with parents 2.1% 3.5% 14.1% 

Couple without children (female buyer)  1.1% 2.9% 5.6% 

Couple without children (male buyer)  5.6% 8.2% 11.9% 

Couple with children (female buyer)  1.3% 2.8% 5.8% 

Couple with children (male buyer)  3.5% 7.0% 11.6% 

 
For vehicle purchase prices, AFLEET uses the average purchase price of different 
vehicle types in each category, but does not consider the regional average costs of 
vehicles. Instead, truecar.com is used to find the average MSRP of the studied vehicles 
[156]. The city with the highest population in each region is considered to estimate the 
purchase price for each region. Table 5-3 shows the minimum and maximum MSRPs of 
all studied regions for each vehicle type. 
 

Table 5-3 Vehicle Purchase Price (MSRP) 

Vehicle Type Minimum Price ($) Maximum Price ($) 

ICV 18,710 20,245 

HEV 22,041 24,349 

PHEV 29,810 32,707 

EREV 30,510 34,202 

BEV 31,812 35,318 
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Preferences in terms of the purchase price and maintenance and refueling costs are 
derived from the values found in available literature [121,155]. Since the EDC and the 
WFP are not amongst the attributes that every single agent cares about, whether the 
agent cares about these attributes or is indifferent will be randomly determined for each 
agent. If the agent considers environmental factors when making his/her decision, the 
associated preference is assumed to follow the values given in Tables 5-4 to 5-6. These 
preferences are estimated in a way that the overall purchase probability associated with 
each attribute falls in a same order of magnitude. Tables 5-4 to 5-6 summarize the 
preferences of agents of different social and income categories with respect to each 
vehicle attribute. 
 

Table 5-4 Preference Values for Each Cost Attribute (Low Income Category) 

Social Category Purchase Price Maintenance and Refueling EDC WFP

Single female -3.68 -0.50 
-0.03 -0.06 

Single male -3.35 -0.22 
-0.01 -0.02 

Female living with parents -3.12 -0.50 
-0.03 -0.06 

Male living with parents -2.92 -0.25 
-0.01 -0.03 

Couple without children (female buyer)  -4.60 -0.31 
-0.02 -0.03 

Couple without children (male buyer)  -4.31 -0.41 
-0.02 -0.05 

Couple with children (female buyer)  -4.26 -0.39 
-0.02 -0.04 

Couple with children (male buyer)  -3.92 -0.35 
-0.02 -0.04 

 
Table 5-5 Preference Values for Each Cost Attribute (Medium Income Category) 

Social Category Purchase Price Maintenance and Refueling EDC WFP 

Single female -4.16 -0.40 
-0.02 -0.04 

Single male -3.15 -0.29 
-0.01 -0.03 

Female living with parents -3.01 -0.38 
-0.02 -0.04 

Male living with parents -2.86 -0.33 
-0.02 -0.04 

Couple without children (female buyer)  -3.20 -0.45 
-0.02 -0.05 

Couple without children (male buyer)  -3.89 -0.38 
-0.02 -0.04 

Couple with children (female buyer)  -3.25 -0.44 
-0.02 -0.05 

Couple with children (male buyer)  -3.64 -0.41 
-0.02 -0.05 

 
 

 

 

 

 



 71

Table 5-6 Preference Values for Each Cost Attribute (High Income Category) 

Social Category Purchase Price Maintenance and Refueling EDC WFP 

Single female -2.25 0.00 
0.00 0.00 

Single male -1.05 -0.29 
-0.01 -0.03 

Female living with parents -4.80 -0.23 
-0.01 -0.03 

Male living with parents -2.15 -0.28 
-0.01 -0.03 

Couple without children (female buyer)  -1.01 -0.44 
-0.02 -0.05 

Couple without children (male buyer)  -1.81 -0.29 
-0.01 -0.03 

Couple with children (female buyer)  -1.22 -0.33 
-0.02 -0.04 

Couple with children (male buyer)  -1.36 -0.27 
-0.01 -0.03 

 
The government also offers monetary incentives for purchasing EVs, so two types of 
government incentives (federal and regional) are considered in this analysis; these 
incentives are summarized in Table 5-7. Federal incentives are applied first, after which 
any applicable regional incentives are added to the federal incentive amounts to obtain 
the total incentive amount provided for any given region. The incentive rates listed in 
Table 5-7 are assumed to be constant for the entire analysis period, but whether or not 
the government actually offers these incentives is decided by the assumed scenario and 
also applying a random function to each analysis cycle. For instance, in the first 
scenario analysis, it is assumed that the government incentives are offered for the first 
10 years and then randomly for the rest of analysis period. 
 

Table 5-7 Government Incentives [109,157] 

 
To model the willingness of an agent to purchase an EV, this study assumes that said 
willingness is influenced primarily by the word-of-mouth effect. Likewise, it is assumed 
that each agent contacts another agent once per month, and that the adoption fraction 
of the contacted agent is randomly selected as a value of up to 1%. Moreover, since 
there is no data available to definitively determine whether or not a specific individual 
within a particular household will decide upon a particular purchase [121], each agent is 
therefore defined as a household. Furthermore, each agent’s tendency to buy a car will 
differ from one income level to another. 
 
With this in mind, different scenarios can be applied in this analysis. In the developed 
model, for instance, gasoline and electricity prices are changed regularly using a 

Government 
Incentives   PHEVs   EREVs   BEVs  

 Federal   $2,500   $4,000   $7,500  

 California   $1,500   $1,500   $2,500  

 Washington   -   - 
 6.5% of purchase 
price  

 Georgia   20% of the cost - Up to $5,000  

 Maryland   $550   $1,000   $3,000  
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random distribution given the estimated ranges from the EVRO model, which are based 
on EIA projections. Moreover, government subsidies can be offered randomly any year. 
Finally, it is assumed that the economic situation simulated in the model stays the 
same, with no recessions or major economic improvements occurring during the 
analysis period. Based on the preliminary data and uncertainty ranges previously 
described, the ABM model is then run for 10,000 replications to cover most of the 
possible interactions between the varying factors. 
 

5.2.5 Verification and Validation of ABM 

One of the biggest challenges faced during the AB modeling process is the verification 
and validation of the model and its results. Due to the heterogeneity of the agents in the 
model, there is a possibility of a new macro-level pattern emerging from the micro-level 
interactions between agents [158]. Thus, the main challenge in this effort is to determine 
how to properly validate the model and overcome the methodological obstacles 
associated with empirical validations. In general, validity for computational models is 
defined in terms of conceptual, internal, external, cross-model, data-related, and/or 
security-related validity [159]. Each of these types of validity are compared to an 
acceptable degree of confidence as defined by the modeler or decision maker. These 
specific validity types are described in further detail below. 

 The model is conceptually valid if it represents the conceptual and theoretical 
characteristics of the real-world problem. 

 The model is internally valid if its programming code runs without any errors. 

 External validity means that the model output matches the real-world data. 

 Cross-model validation compares the developed model with a similar model to 
check whether or not their respective outcomes match. 

 Data-related validity means that the data used in the model is adequate and 
accurate. 

 Finally, security-related validity means that adequate safeguards have been 
provided in the model to minimize the impacts of any issues that may adversely 
affect the model and/or its results. 

This study uses the validation/verification process described in [120,160], in which four 
steps (grounding, calibrating, verifying, and harmonizing) are outlined to validate and 
verify computational models. After running the model for different numbers of agents, it 
was found that the number of agents does not significantly affect the market penetration 
results. 

 First, the model is grounded based on the research currently being performed 
by the Electric Vehicle Transportation Center (EVTC) [161]. This project is aimed 
at preparing transportation systems for the future influx of electric vehicles. The 
grounding of a model involves discussing why the model is reasonable, what its 
limitations and scope conditions are, and how it compares with current models. 
The grounding process can be enhanced by verbally explaining that the model 
demonstrates the key elements of a specific group and/or social process; in this 
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case, different social and income categories are taken into account, and the 
model represents the involvement of each of these categories in the purchase of 
five different types of vehicles. 

 Calibration is used to tune up the model to fit the real-world data. This is usually 
an iterative process in which one or more model characteristics are altered as 
necessary to ensure that the model output come as close to reality as possible. 
The model is first calibrated using parameters from several studies; parameters 
related to the purchase probability of a vehicle are derived from [121], while 
those related to the refueling effect of EVs are derived from [121,162], and all 
parameters from both of these references have been calibrated for the U.S. by 
comparing the U.S. population with the respective populations of Iceland and 
Denmark, for which the parameters had originally been calculated. During the 
calibration process, it was observed that the model has a consistent tendency to 
accept HEVs as an appropriate option as well as ICVs, so consumer willingness 
with respect to HEVs was adjusted accordingly to reflect the real data. The 
preferences of each agent with respect to the EDC and WFP are likewise 
calibrated to more accurately reflect customer behavior.  

 The verification process is performed using a cross-model comparison with 
output data from the Light-duty Alternative Vehicle Energy Transitions (LAVE-
Trans) model and with the Argonne National Lab’s VISION model [163,164]. Both 
models are used to represent a business-as-usual (BAU) case in the National 
Research Council of the National Academies’ (NRCNA) report, “Transition to 
Alternative Vehicles and Fuels” [165]. Here, first, a base-case model is formed 
based on average values for the purchase price, M&R cost, EDC, and WFP, 
while also assuming that no government subsidies are given during the analysis 
period and that agents do not interact with each other. The comparison reveals 
that the generated data from the EVReMP’s base case model (Figure 5.2) does 
not differ significantly from the proposed BAU case as presented in [165]. A 
statistical verification method is used to compare the results of BAU case in 
NRCNA’s report with those from the developed EVReMP base case model. Both 
One-Way ANOVA and two-tailed small-sampled matched pairs hypothesis tests 
reveal the significance level of less than 5 %. Statistical approaches are used in 
numerous studies to validate models and analyze data such as in pavement 
engineering [166–168], sustainable infrastructure [169–171], and sustainable 
transportation [126]. 

 The goal of harmonization is to demonstrate that the assumptions made in the 
model are “in harmony with” (i.e. adequately correspond to) the real world. To 
this end, the model is first validated by comparing it with the model presented in 
[165], and is then tested by applying the relevant government subsidies and 
comparing the resultant model with the model presented in one of the LAVE-
Trans’ reports [163].  
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Figure 5.2 Vehicle Sales by Vehicle Technology for the Base Case (1000s/year) 

After applying these steps, we are confident that the developed ABM accurately fits the 
real world and can therefore be used to evaluate the future market share of electric 
vehicles.  
 
5.3 Analysis Results 

The Maintenance and Refueling (M&R) Cost, Environmental Damage Cost (EDC), and 
Water Footprint (WFP) of the studied drivetrains are presented for each U.S. National 
Energy Modeling System (NEMS) region in order to illustrate the ranges of uncertainty 
encountered in the analysis. The NEMS regions and their abbreviations are shown in 
Figure 5.3. 
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Figure 5.3 NEMS Electricity Market Module Regions [172] 

5.3.1 Maintenance and Refueling Cost 

The net present value of the Maintenance and Refueling (M&R) costs of the five 
different vehicle types are presented for a 16-year lifetime. Due to the wide variety of 
possible results for all 22 regions and for all 5 vehicle types, these M&R costs are 
shown throughout the U.S. with only the regional variations with respect to ICVs and All-
Electric Vehicles (BEVs) shown in this study, since these two vehicle types represent 
opposite extremes in terms of gasoline versus electricity as fuel options. Figure 5.4 
shows the average net present values of the M&R costs for all of the studied regions, 
calculated in this analysis as the average of all captured M&R costs for all of the 
replications in all of the considered U.S. regions, with the error bars in the figure 
representing the M&R cost ranges for each vehicle type. 
 
On average, the ICV has the highest M&R cost with an average of $48,128. The lowest 
and highest M&R costs for the ICV occur in the New York Up State (NYUP) region at 
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$44,560 and in the Western Electricity coordination council/Southwest (AZNM) region at 
$52,329, respectively. Obviously, the M&R cost decreases as the vehicles’ fuel 
economy rates (mpg) increase. The HEV has the second highest average M&R cost at 
$43,357, followed by the PHEV at $40,192, the EREV at $36,641, and finally the BEV at 
$33,582. The lowest and highest M&R costs of BEVs are found in the NYC-Westchester 
(NYCW) region at $31,743 and in the SERC Reliability Corporation/Central (SRCE) 
region at $35,471, respectively. The data uncertainty ranges decrease when moving 
from gasoline-powered vehicles to EVs due to better data availability on electricity for 
the U.S. regions. 

 

Figure 5.4 Maintenance and Refueling Costs of Studied Vehicles Throughout the U.S. 
(in Thousands of Dollars) 

A regional representation of the data is also possible; here, the regional variations in the 
M&R costs of ICVs and BEVs are presented in Figures 5.5a and 5.5b, respectively, for 
a 16-year vehicle lifetime. This comparison is especially useful because ICVs rely 
completely on gasoline as a fuel source while BEVs likewise rely completely on 
electricity. On average, driving an ICV in the Texas Reliability Region (ERCT) has the 
cheapest M&R cost at $47,190, while California is the most expensive region to drive an 
ICV with an M&R cost of $49,836 (Figure 5.5a). 
 
The M&R costs of BEVs seem to have less variation, with NYWC being the cheapest 
($32,862) and SERC Reliability corporation/Gateway the most expensive ($34,195) 
regions in which to drive a BEV, on average (Figure 5.5b). There are a number of 
possible reasons for the changes in M&R costs for the studied vehicle types, including 
future price changes for electricity, future changes in the electricity generation mixes in 
each region, and/or uncertainties with respect to future gasoline prices in each region.  
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Figure 5.5 a. Maintenance and Refueling Cost of Internal Combustion Engine Vehicle 
for different regions and b. Maintenance and Refueling Cost of All-Electric Vehicle for 

different regions, both in Thousand Dollars 

 

5.3.2 Environmental Damage Cost Results 

The Environmental Damage Cost (EDC) results for each of the five different vehicle 
types are presented in Figure 5.6a. Due to wider uncertainty ranges in estimating the 
EDC, its variation is much higher than that of the M&R cost. The EDC trend is almost 
the same as that of the M&R cost, with the ICV having the highest EDC out of the five 
alternatives on average at $5.19 million over the 16-year vehicle lifetime. The lowest 
and highest EDCs were found in the CAMX and Midwest Reliability Council/East 
(MORE) with EDCs of $0.74 million and $10.75 million, respectively. The reported 
pollution emissions for the state of California were found to be the lowest for gasoline, 
which would explain its lower EDC rate. 
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Same as M&R cost as shown previously, a transition toward an electrified fleet with 
higher fuel economy rates dramatically reduce the EDC. The BEV has the lowest 
average EDC throughout the United States, with an average EDC of approximately $1 
million. The Northeast Power Coordinating Council / NYC-Westchester (NYCW) and 
Western Electricity Coordinating Council/ Northwest Power Pool Area (NWPP) regions 
have the lowest and highest EDCs for the BEV with EDCs of $0.12 million and $3.27 
million, respectively. Moreover, the range of EDCs for the ICV is much higher than 
those of other vehicle types, owing largely to the higher variability in gasoline-related 
EDCs and a current lack of data for the unit EDC for gasoline, both of which contribute 
to greater degrees of uncertainty in the final results. In future studies, more data on 
EDCs may be available to potentially reduce this level of uncertainty. 

Figure 5.6 Life Cycle Environmental Damage Costs for the studied vehicles in Millions 
of Dollars (a), and Water Footprints of the studied vehicles in Thousands of Gallons (b) 

 

5.3.3 Water Footprint Results 

Figure 5.6b shows the Water Footprints (WFPs) of each of the studied vehicle types. 
Electric cars are shown to have higher WFPs than gasoline-powered cars, primarily due 
to the use of water in electricity generation and/or battery production being the main 
driver for water consumption. Consequently, the BEV has the largest WFP out of all of 
the considered vehicle alternatives, with a lifetime WFP of approximately 852 thousand 
gallons (Tgal) of water on average. The SERC Reliability Corporation/ Virginia-Carolina 
(SRVC) and NYLI regions have the lowest and highest average WFPs for the BEV at 
1,127 Tgal and 406 Tgal of water, respectively. On the other hand, HEVs have the 
lowest average WFP at 119 Tgal of water, owing mainly to the fact that HEVs do not 
rely on grid-sourced electricity, use less gasoline than ICVs, and have smaller batteries 
than EVs. The SERC Reliability Corporation/Delta (SRDA) has the lowest WFP for the 
HEV at 71 Tgal of water consumption, while the CAMX has the highest WFP at 194 
Tgal of water. 
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5.3.4 Agent Based Modeling Results 

Figure 5.7 shows how these agents are placed in each of the NEMS regions based on 
the population and number of registered vehicles in each region. The Reliability First 
Corporation/West (FRCW) region has the most agents with the California (CAMX) 
region as a close second, both containing almost 43 percent of the total number of 
agents in the model. Conversely, the NYC-Westchester (NYCW) has the lowest number 
of agents, followed by the Southwest Power Pool/North (SPNO) region.  

 
Figure 5.7 Configuration of agents in the ABM model  

The effect of different policies can be tested on the market penetration of the EVs; in 
this study, the effect of government subsidies was tested using the developed EVReMP 
model. This policy is aligned with one of the LAVE-Trans publications, in which 
government policies were mandated for the first 10 years [163]. Two types of 
government subsidies (federal and regional) are considered in this policy, and it is 
assumed that the government supports EVs penetration for the first 10 years, and a 
randomly generated factor is used to determine whether the government offers 
subsidies in each year thereafter. The model is then run for 10,000 replications. The 
results of this analysis can be shown in any number of forms, including the average 
market share of all vehicle types for every replication, the changes in the market share 
of a particular vehicle over time, and the regional variations of the market penetration of 
EVs. First, the average market penetrations of the studied vehicle types are illustrated in 
Figure 5.8; compared to the base case model, the market shares of the EVs have 
increased dramatically, and approximately 26 percent of the fleet will be electrified on 
average by the year 2030, due to the provided government subsidies.  
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At the end of analysis period, the BEV dominates the market among the EV 
technologies, with 11% of the total market share. This is because the M&R costs of the 
BEV are the lowest among the specific EV types while the offered government 
subsidies tend to favor all-electric vehicles. The EREV has the second largest market 
share at 8%, and the PHEV has the lowest market penetration among the electrified 
drivetrain with a 6% market share. The penetration of the HEV stays almost the same 
as in the base case, mainly because no incentives are offered to purchase an HEV.

  
Figure 5.8 Vehicle Sales by Vehicle Technology for the Government Subsidies 

Scenario (1000s/year) 

Another way to look at the results is to illustrate the variations in market penetration for 
each vehicle type; Figure 5.9 shows the variations in the market penetration of the 
drivetrain for the first scenario. As this figure shows, the market share of the ICV 
decreases while the market shares of all other alternatives increase. The variation in the 
results for the ICV is lower than those for other alternatives, due to less variability in the 
relevant decision-making factors for purchasing an ICV, while this variation increases 
over time for all other alternatives.  
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Figure 5.9 Variations in the Market Penetrations of the studied vehicles under the 

Government Subsidies scenario (1000s/year) 

The next policy analysis tests the word-of-mouth effect (or the social acceptability of the 
EVs) in terms of its effect(s) on EV market penetration. To this end, this policy scenario 
assumes that all agents are willing to consider purchasing an ICV, meaning that the 
agents’ willingness to purchase an ICV is always 1. However, agents who purchase any 
other vehicle alternative contact other agents once a month and try to convince these 
other agents to purchase the non-ICV vehicle type that they own. Whether or not the 
contacted agent is convinced to consider the non-ICV vehicle type in question is 
simulated using a randomly generated function in which the probability of the contacted 
agent being convinced is 10%. Figure 5.10 represents the average market penetration 
results of the studied drivetrain under these conditions for the entire studied regions in 
the United States. 
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Figure 5.10 Vehicle Sales by Vehicle Technology for the Government Subsidies and 

WOM Scenario (1000/year) 

As shown in the graph above, the overall market penetration of the EVs has significantly 
increased relative to the previous case, with EVs dominating approximately 30% of the 
total market share in 2030. The ICV will still have the highest market penetration with a 
56% market share on average, but BEVs will have the second largest market share at 
14%, followed by HEVs at 13%. Conversely, the PHEV will still have the lowest market 
share at 6% on average. 
 
5.4 Discussion and Limitations 

The objective of this study was to develop the Electric Vehicle Regional Market 
Penetration (EVReMP) tool to help policy makers and transportation planners to identify 
the future market shares of electric vehicles in the United States. The EVReMP model 
compares three different EV technologies with hybrid and internal combustion gasoline 
vehicles using a developed agent-based model, and predicts the market share of the 
studied vehicles for the year 2030, accounting for agent preferences in terms of the 
purchase prices, maintenance and refueling costs, environmental damage costs, and 
water footprints of all vehicle types in the drivetrain. The purchase price is estimated 
using current market data, while all other vehicle attributes are estimated using data 
from the Electric Vehicle Regional Optimizer (EVRO) model, which estimates the 
variability ranges with respect to the future maintenance and refueling costs, 
environmental damage costs, and water footprints of the electric vehicle types. An 
Exploratory Modeling and Analysis (EMA) approach was then applied to the data to 
properly account for the inherently deep uncertainty associated with market penetration. 
The EMA approach was also used in tandem with the developed ABM to investigate the 
future market shares of the considered vehicle types in twenty-two separate electricity 
grid mix regions in the U.S., after which the EVReMP tool was able to generate a variety 
of results. In summary, the following conclusions are highlighted: 

10

11

12

13

14

15

16

17

18

19

2015 2017 2019 2021 2023 2025 2027 2029

Th
o
u
sa
n
d
s

Vehicle Sales by Vehicle Technology for the Government Subsidies and WOM Scenario (1000s/year)

ICEV HEV PHEV EREV BEV



 83

 All-Electric Battery Vehicles (BEVs) are the most cost-effective vehicle type in terms 
of M&R costs, with an average M&R cost of $31,743 over vehicle lifetime. The 
lowest and highest M&R cost for the BEVs occur in the NYC-Westchester (NYCW) 
and SERC Reliability Corporation/Central (SRCE) regions, respectively. 

 The Internal Combustion Engine Vehicle (ICV) has the highest M&R cost among the 
studied vehicle types, with an average M&R cost of $48,128. The lowest LCC of 
ICVs was found in the New York UpState (NYUP) region, while the highest M&R 
cost was found in the Western Electricity coordination council/Southwest (AZNM) 
region. 

 BEVs have the lowest lifetime EDC at approximately $1 million on average, and 
transitioning to a more electrified fleet reduced the EDC dramatically. 

 On the other hand, BEVs consume/withdraw the largest amount of water on average 
over their lifetimes, owing mainly to the upstream electricity generation and water 
consumption during battery production. Conversely, HEVs have the smallest WFP 
on average, since they do not rely on the power grid for electricity, consume less 
gasoline than ICVs, and have smaller batteries than BEVs. The WFP dramatically 
increased during transition toward an electrified fleet. 

 The EVReMP model reveals that the government subsidies will play a vital role in 
the market adoption of EVs; compared to the business-as-usual scenario, when 
government subsidies were mandated for the first 10 years and then randomly 
granted or denied in subsequent years, the collective market share of the EVs 
increased from 1.5% to as high as 26% by the year 2030. 

 Social acceptability and the word-of-mouth effect will also have a significant effect on 
EV market shares; when with government subsidies, the combined effects of both 
policies can increase the market penetration of the EVs to as high as 30% on 
average case by the year 2030. 

 The main lesson learned from this analysis is that the United States can feasibly 
meet the established goal of a 20% EV market share of new sales by 2030, but such 
a goal would require mandating government subsidies for at least the first 10 years 
and encouraging the social acceptability of the EVs via advertisement and other 
such means. In addition, establishing a regional subsidy policy for regions with more 
agents (such as the Reliability First Corporation/West (FRCW) region) could 
potentially increase the social acceptability of EV and thereby improve the market 
penetration of EVs. 

 Ultimately, the results of this analysis reveal that the U.S. vehicle fleet will eventually 
move away from the ICVs, and that this movement is likely to proceed faster with a 
small increase in oil prices.  

Limitations to the work presented here include the absence of the influence of 
manufacturers on EV market penetration; in addition to the policy initiatives previously 
discussed, EV manufacturers can also compete with each other in each analysis year 
and ultimately yield accelerated improvement in EV technology, resulting in an overall 
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positive impact on EV market penetration. Governments can also enforce the Corporate 
Average Fuel Economy (CAFE) regulations and thereby influence the manufacturers’ 
benefits in terms of EV market shares; since manufacturers were not considered as an 
agent in this study, these potential benefits were not taken into account. In addition to 
the incentives previously discussed, some utility companies offer special discounts for 
EV consumers to charge their vehicles during off-peak hours and/or during the evening, 
so the effect of lower electricity rates for the owners of EVs could be considered as a 
scenario in the analysis. Moreover, the time of day when an EV is charged has a 
considerable effect on the marginal load that is placed on the power grid; consequently, 
as more EVs are introduced to the market, the electricity market will most likely face a 
change in demand levels during on-peak and off-peak hours, which is likely to effect the 
rate structure of electricity, in turn eventually impacting the refueling costs of EVs. Thus, 
for a more thorough analysis, the times of day when EVs are charged should be also 
taken into account. 
 
Moreover, manufacturers and consumers are supporting this technological shift by 
designing EVs that are more reliable and by helping to mitigate GHG emissions. 
The VAAMP model considers a hypothetical “neighborhood” in which some 
assumptions are still made, such as the assumptions that and wage levels stay the 
same, that the effect of foreign currency changes on the price of exported vehicles does 
not affect the market, and there are no distinctions between cars and trucks. 
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6.0 Applications of Vehicle-to-Grid Technology for Transit and School 
Buses 

6.1 Introduction 

Altogether, the power generation and transportation sectors were responsible for 58% 
of the total greenhouse gas (GHG) emissions in the U.S. in 2013 [173]4. Therefore, 
these two main contributors to GHG emissions attract significant amounts of attention 
from various industries, research institutes, and government organizations as key areas 
in which to reduce climate change impacts. For this purpose, electric vehicle 
technologies are a promising alternative fuel initiative for vehicles, and have been 
supported through a variety of research studies and government incentives [83,84]. 
Moreover, although energy source of electricity generation is also depended on fossil 
fuels, electric vehicles are a promising solution for today’s high fossil fuel dependency 
and the environmental emissions of the transportation sector with the increasing 
availability of renewable energy sources for electricity generation [174]. Since the clean 
air act cites diesel as one of the most harmful fuel types [175], the adoption of 
alternative fuel options such as electric vehicles is especially crucial for heavy-duty 
vehicles, most of which still currently use diesel as their primary fuel source. 
Fortunately, recent battery and electric motor powertrain developments have removed 
the main barriers for using electricity as a fuel source for heavy-duty vehicles [176]. 
Battery electric buses are the most common battery electric heavy-duty vehicle in 
today’s market, and hundreds of transit and school bus examples can be found in the 
U.S. However, other heavy-duty vehicle deployment is only limited to refuse trucks, 
which is still under development stage and only two in-use and 13 planned orders can 
be found in the U.S. [176]. 
 
Early stages in the development of battery electric (BE) buses were not feasible for 
market adoption due to their low ranges, high initial costs, and other factors. 
Conversely, today’s BE transit buses are a competitive alternative to internal 
combustion engine buses as well as other types of alternative fuel buses, such as 
natural gas and biodiesel buses. Transit bus fleet statistics indicate that the market 
shares of diesel, natural gas, and electric/hybrid buses in the total U.S. fleet were 
(respectively) 86.8%, 12.4%, and 0.3% in 2004 whereas the corresponding 2014 market 
shares for these same fuel types were 56.3%, 16.8%, and 17.9%, respectively [177]. 
Although the overall market penetration of electric/hybrid vehicles mostly consists of 
hybrid (electric-diesel) buses (i.e., battery electric transit bus deployment is lower than 
0.04% in electric/hybrid bus fleet [176]), this change in market shares clearly depicts the 
significant deployment of electric powertrain technologies for transit buses in only ten 
years. In addition, there are almost 500,000 school buses in today’s U.S. fleet, where 
transit bus fleet only consists of 66,218 buses including bus rapid transit but excluding 
commuter bus systems [178]. Although reports promoting the greater adoption of 

                                                 
4 The contents of this section were partly published in Ercan, T., Noori, M., Zhao, Y., and Tatari, O. 
(2016). “On the front lines of a sustainable transportation fleet: Applications of vehicle-to-grid technology 
for transit and school buses.” Energies, 9(4), 230, 1-22, 2014 IF: 2.077. DOI: 10.3390/en9040230  
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alternative fuels for school buses date as far back as the early 2000s, alternative fuel 
school buses have not yet been as widely adopted as alternative fuel transit buses 
[179]. 
 
Transit buses should be in operation most of the time, as they are purchased to serve 
and earn revenue for transit authorities. Transit bus operation cycles could require 
heavy payloads, frequently stop-and-go operational patterns, longer route requirements, 
and operation schedules of typically seven days a week with revenue hours ranging 
from 8 h to 12 h compared to the operation schedules of school buses [180]. Chandler 
et al.’s report states that revenue hours for transit buses could even reach as many as 
24 h per day [181]. On the other hand, school bus operation schedules are more 
feasible for electric buses, because they travel an average of 50 miles per day within a 
certain route and are in use for 4 to 5 hours per day on average [182]. Moreover, school 
buses are in use mostly for school days, which in the U.S. amounts to a total of only 180 
days per year [183]. Therefore, school buses could be a promising and convenient 
candidate for electrification, but the deployment and application of BE school buses is 
limited to few experiments in the U.S. which is due to safety certification of battery 
electric school buses are still in the progress of approval in many states and well-known 
school bus manufacturers have not been involved in developing such school buses 
[176]. 
 
In addition to sustainable transportation ideas using alternative energy sources, another 
sector’s harmful emissions from inefficient power plants could be eliminated using a 
novel technology called the vehicle-to-grid (V2G) system. The main goal of the V2G 
technology is to support grid operators for their mission to supply grid by reliable 
electricity service. Thus, V2G technology uses the stored energy from an electric 
vehicle’s battery during idle times to supply electricity to the local power grid for reliable 
and sustainable service. The average electricity grid system has several demand 
fluctuations throughout any given time period, and today’s utility service providers use 
combustion power generation systems to supply these demand changes for continuous 
service, although these conventional systems have significant environmental emission 
impacts. Alternately, instead of using combustion power generators, utility service 
providers may be required to buy electricity from other nearby available providers to 
supply high demand, but doing so is often inefficient in terms of cost or environmental 
concerns. On the other hand, grid providers have contracts with V2G service providers 
(often electric vehicle or fleet owner) for fixed rates of per unit power dispatched. 
Therefore, grid providers can choose to supply its demand from feasible energy sources 
which could be V2G system or any other available ancillary service [184]. 
 
One of the measures of V2G system capacity is battery storage capacity. BE buses 
have larger battery sizes compared to electric passenger vehicles, so this study will 
investigate the potential of V2G service availability from BE transit and school buses in 
the U.S. in terms of economic and environmental benefits. In addition, these bus types 
are compared with internal combustion engine diesel buses in terms of cumulative cash 
flow and air emission externality results for the operation-related downstream (on-site) 
and upstream (off-site) emission impacts. Since transit and school bus operations 
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generally occur in or near highly populated areas, it is crucial to present air emission 
externalities as an environmental impact category. 
 
Kempton and Tomic and Kempton et al.’s studies [184,7,185] are cited in this research 
extensively for some of the materials and method that is used for V2G related impact 
analysis. Furthermore, their studies provide key elements that lead the research of V2G 
technology and their research is advanced by adding cash flow and environmental 
impact analyses. As opposed to the most of V2G related studies with passenger vehicle 
examples, this research used transit and school buses for its analysis. Noel and 
McCormack [182] presented comparison analysis of diesel and BE school bus using 
V2G, however it did not consider lifetime cash flow analysis of both buses, V2G related 
emission savings, and diesel production related (upstream) emission externalities in five 
ISO regions. Therefore, this study distinguishes itself from previous efforts in the 
research community by considering both transit and school buses for V2G applications, 
including regional electricity generation mixes, and completing this analysis with the 
comparison of diesel buses and air pollution externalities for public health.  
 
6.2 Materials and Methods 

6.2.1 Environmental Emission Calculation Methods 

LCA method is utilized in this research and it only considers the use phase of transit 
and school buses, and a well-to-wheel (WTW) approach is used to assess the relevant 
downstream and upstream emissions. In addition to the use phase of buses, some of 
other LCA phases are excluded from this study such as manufacturing and end-of-life. 
Since two different fuel options are considered for two different types of buses, use 
phase impacts are distinct for the comparison of these bus type combinations and even 
though the fuel types are different, manufacturing impacts can be assumed similar due 
to identical body (shell) types for buses [38,4]. Moreover, this research emphasizes on 
V2G application for transit and school buses, which is affecting the use phase related 
impacts. 
 
Each fuel type and vehicle type has different emission characteristics. After identifying 
the bus and fuel types, the analysis could be separated in terms of downstream-phase 
and upstream-phase impacts. As per the LCA methodology, downstream impacts can 
be considered to be on-site activity related impacts, which in this case these are 
quantified as tailpipe and tire & brake wear (TBW) related emissions. Downstream 
impacts are gathered from the emission data for diesel transit and school buses from 
environmental protection agency’s (EPA) widely utilized MOVES tool with the 
consideration of yearly emission changes [186]. 
 
Diesel production and electricity generation activities are also responsible for upstream 
impacts, corresponding to emissions from petroleum refineries and the applicable power 
generation and supply sectors, respectively. Therefore, as a part of overall WTW 
analysis, upstream impacts (well-to-pump WTP) analysis results are gathered from the 
tool GREET 2015 [187]. The WTW analysis can then be concluded with the summation 
of downstream and WTP emissions for each bus and fuel type. In Figure 6.1, the 
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pathway of emissions from diesel bus is graphical illustrated on the upper part where 
BE bus is shown on lower part of the graph. The only difference that can be captured in 
this figure relative to regular operation is V2G service availability, which provides 
support back to the grid as needed.  

 
Figure 6.1 Transit and school buses’ environmental emissions data collection and 

analysis path. 

Different independent system operators (ISOs) or regional transmission organizations 
(RTOs) regulate electricity prices, and each region’s power plant types determine the 
environmental emission rates for that region. Therefore, four ISO regions and one RTO 
region are utilized in this analysis due to lack of corresponding data from other regions. 
The regions included in this study are: The Pennsylvania-New Jersey-Maryland (PJM) 
interconnection (RTO region), The New-York ISO (NYISO) region, The ISO-New 
England (ISO-NE) region, The Electric Reliability Council of Texas (ERCOT) ISO 
region, and The California ISO (CAISO) region. 
 
The downstream electricity generation impacts of these regions are gathered from the 
GREET model’s database [187]. Since the analysis in this study covers the full lifetime 
of the buses in question, the electricity generation emissions should be adjusted with 
the energy information administration’s (EIA) regional electricity generation mix 
projection multipliers [174]. Upstream (indirect) impacts related to electricity 
consumption are calculated with eGRID’s gross grid loss factors, allowing the analysis 
to capture transmission and distribution emissions [188]. Equation (1) calculates the 
yearly downstream and upstream emissions from electricity generation in each region 
for each air pollutant type, including a summation of the impacts of each power plant 
type:  

Electricity	consumption emissions
eGRID
1 GLF

UG ∗ EM  (1) 

The notation expressed in Equation (1) is explained in Table 6-1. It should be also noted 
that regional electricity generation related emissions are expected to decrease for future 
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years with the promises for renewable energy deployments. Although there are 
opportunities to power electric vehicle fleets with only renewable energy sources on 
site, it is out of scope of this analysis and studied in reference [189]. Similarly, V2G-
related emissions are calculated using Equation (2) for each region in each analysis 
year: 

V2G	related	emission savings
∗

∗ 	  
(2) 

where Ndisp is the dispatched electricity (kWh), Mcombustion is the gas combustion turbine 
emissions rate, Mgrid is the electricity production emissions rate in r region for y year, 
and Mbattery dep is the emissions rate corresponding to battery depreciation or wear-out 
from providing V2G services. It should be noted with respect to Equation (2) that gas 
combustion turbines have relatively low efficiencies and high environmental emission 
impacts compared to energy storage methods such as those offered via V2G 
technology. Moreover, separate studies by Lin et al. and by Makarov et al. both argued 
that combustion turbines that are used for regulation services are two to three times 
less efficient than energy storage systems [190,191]. Based on this assumption, the 
value of Mcombustion in Equation (2) is assumed to be two to three times higher than the 
theoretical gas combustion turbine emissions. Per unit emission factor projections for 
each type of power plants are considered as normally distributed with ±10% uncertainty. 
Battery wear-out emissions are calculated from the Li-Ion battery report of EPA (2012), 
which considers an environmental-LCA analysis of Li-Ion batteries, including emissions 
from the raw material extraction phase, manufacturing phase, use phase, and end-of-
life phase [192].  
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Table 6-1 Explanations of notations and indexes. 

Notati
on 

Explanation Type Index 

j Air pollutant type 

GHG j = 1 
CO j = 2 
NOx j = 3 
PM10 j = 4 
PM2.5 j = 5 
SOx j = 6 
VOC j = 7 

p Power plant type 

Coal p = 1 
Oil p = 2 
Gas p = 3 
Other Fossil p = 4 
Nuclear p = 5 
Hydro p = 6 
Biomass p = 7 
Wind p = 8 
Solar p = 9 
Geo-Thermal p = 10 

r ISO/RTO regions 

PJM r = 1 

ISO-NE r = 2 

NYISO r = 3 

ERCOT r = 4 

CAISO r = 5 

y Analysis period years - y = 2015 - 2027 

i Bus type 
Transit i = 1 

School i = 2 

eGRIDj

ry 

Yearly (y) emission rate of energy losses in r region for j air pollutant based on 
eGRID data (lb/kWh) 

GLFr Grid loss factor (GLF) for r region based on eGRID data 

UGjp 
Well-to-pump (WTP) analysis emissions of energy source for p power plant for j 
air pollutant (lb/kWh) 

EMpry 
Yearly (y) emission rate of electricity production at p power plant in r region 
(lb/kWh) 

UEij Upstream j type of emissions for diesel i type of bus 
UAij Upstream j type of air externality cost for diesel i type of bus 
DEij Downstream j type of emissions for diesel i type of bus 
DAij Downstream j type of air externality cost for diesel i type of bus 
Ki Lifetime electricity consumption of i type bus 
Bj Air externality cost of per MWh electricity generation for j type of emission 

 

6.2.2 Air Pollution Externality Calculation Methods 

There is a wide range of applications for reducing air pollutant emissions from the 
transportation and electricity generation sectors. These air pollutants are not only 
harmful to the environment, but also to human health and to the economy. The air 
pollution emission experiments and policy (APEEP) model quantified these harmful 
impacts by each pollutant type in terms of dollars [193,194]. Furthermore, the APEEP 
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model has been enhanced through Michalek et al.’s (2011) research to define air 
pollutant externalities by their area of impact [63]. Transit and school buses are 
operated mostly near highly populated areas, so it is crucial to present their air pollutant 
related damage costs. This is especially crucial for school buses compared to transit 
buses, as the emissions from school buses mainly affect a non-adult population. On-site 
emissions are treated differently from upstream emissions in terms of their damage 
costs, since upstream emissions are more likely to occur in or near rural areas. Total air 
pollutant externality values for diesel buses and electric buses can in turn be calculated 
with Equations (3) and (4), respectively: 

Air	Externality ∑ UE ∗ UA ∑ DE ∗ DA  (Diesel) (3) 

Air	Externality ∑ ∗  (Electricity) (4) 

where “i” represents the bus type (i = 1 for transit; i = 2 for school). Air pollutant types 
are indexed using the “j” notation, as previously described in Table 6-1 above. It should 
be noted here that BE bus operation related air pollution externalities are measured 
based on annual electricity consumption which rely on fuel economy and annual 
mileage values. Then the V2G related emission savings are quantified due to 
eliminating use of combustion power plants. The electricity consumption of BE buses is 
the same with or without V2G system, however combustion power plants’ emissions 
can be extinguished by this system, which also lead to the reduction of air pollution 
externalities. 
 

6.2.3 Cash Flow and Net Revenue Calculation Methods 

Diesel and BE buses for transit and school bus options have different cost parameters 
due to the specifications required for each bus application. For this reason, the annual 
cash flow is determined for each bus type, taking into consideration each bus type’s 
initial cost, maintenance cost (excluding battery), fuel cost (diesel or electricity), battery 
replacement cost, V2G equipment cost for regulation service, charging facility 
equipment and installation costs, charging facility maintenance cost, and vehicle, V2G 
equipment, charging station resale value. Costs corresponding to charging facilities are 
only considered for BE buses, as it is assumed that suitable diesel fueling station 
infrastructure are already available to fleet operators. Battery replacement cost is also 
only considered for BE buses due to the larger and more expensive batteries required 
for BE buses compared to those required for diesel buses. It is also assumed that all 
vehicles, V2G equipment on the vehicles and charging station equipment are sold at the 
end of their respective lifetimes, and the resulting profit is considered to be the total 
resale value. Finally, cash flow indicators include revenue from using the V2G system, 
which is represented as a negative value for cash flow. Another negative value in cash 
flow is the tax incentives provided by state governments for purchasing new BE buses.  
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Table 6-2 Specifications of bus types and V2G system. 

Notation 
Value 

Definition Unit Reference BE-School 
Bus 

BE-Transit 
Bus 

Pcap 80 203 
Battery Capacity or max 
power available from bus 

kWh [182,4,195] 

Tbattery Uniform (2000–6000) 
Battery lifetime charging 
cycles 

cycles [38,184,196,197]

DVMT 50 101 
Daily vehicle miles 
traveled (VMT) 

miles [38] 

BRange 0 0 
Buffering range to return 
safely charging facility 

miles - 

FE 0.75–2.00 a 1.70–2.24 b Fuel economy kWh/miles 

a Low range: 
[182]; High 
range [198]. 
b Low range: 
[199]; High 
range: [38]. 

Tdispatch 0.3 0.3 Dispatch time h  

Xconvert 0.93 0.93 
DC to AC conversion 
factor 

- [200] 

Pdispatch 70–140 70–140 
Capacity of charging 
facility could transfer for 
revenue 

kW - 

Tplug 19.5–21 8–12 
Number of hours that bus 
is plugged to the charger 

hours [181,182] 

Cinstallation 
$5000–
$10,000 

$5000–
$10,000 

Charging facility 
installation cost 

$ (2014) [201] 

Cequipment 
$12,000–
$20,000 

$12,000–
$20,000 

Charging facility 
equipment cost (Level 3) 

$ (2014) [201] 

CC-Main $600–$1000 $600–$1000 
Charging facility annual 
maintenance cost (5% of 
Cequipment) 

$ 
(2014)/year 

[201] 

CB-Main $0.2–$0.75 $0.75 
Per mile maintenance 
cost of bus 

$(2014)/mile [182,202] 

Cbus $230,000 $800,000 Purchase cost of bus $ (2014) [176,182,203] 

Cbat unit $600 
Battery price per kWh 
capacity 

$-year/kWh [204] 

CV2G Uniform ($1900–$2100) 
Cost of V2G system 
equipment 

$ (2014) [184] 

Drate 0.65%–1.15% Annual Discount Rate percentage [149] 
Irate ±10% of CBO’s projections Annual Inflation Rate percentage [205] 

 
Of the regions considered in this study, only New York and California are supplying 
such incentives for new BE bus purchases [206]. For instance, New York provides 
support with a tax incentive of up to $60,000 for BE buses [207], whereas California 
offers up to $117,000 in incentives for BE transit buses. California tax incentives are 
determined by the battery storage size and purchase cost, so the tax incentives offered 
for a 40 foot BE-transit bus tax incentive could add up to a total from $95,000 to 
$117,000, whereas the corresponding available BE-school bus incentives could range 
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from $80,000 to $90,000 [208]. In light of this information on cash flow indicators, 
annual cash flows can be calculated using Equation (5) (corresponding indexes are 
presented in Table 6-1 above).  
 

	 	
Initial	Cost Maintenance Cost Diesel or Electricity	Cost
Battery	Replacement	Cost
Charging	facility	equipment	and	installation	cost
Charging	facility	maintenance	cost
Cost	of	V2G	Upgrade	on	Vehicle
Resale	value	of	vehicle, V2G equipment, charging station	
Net	revenue	of	V2G service Tax incentives  

(5) 

Some of the parameters presented in Equation (5) refer to notations presented in Table 
6-1. For instance, the initial cost is Cbus, the maintenance cost is CB-main, the battery cost 
is Cbattery, the charging infrastructure equipment and installation cost is the sum of 
Cequipment and Cinstallation respectively, the charging facility maintenance cost is CC-main, 
and the cost of V2G upgrades for the vehicle is CV2G. 

Annual cash flow could be presented as net present annual cash flow, with the 
consideration of economic parameters such as discount rates (Equation (6)). Like the 
above-mentioned cash flow indicators, the considered discount rate (Drate) is also 
described further. 

Net	present	annual cash flow
Annual cash flow

1
 (6) 

One of the key parameters for calculating the total annual cash flow is the revenue 
earned from providing V2G services, which is another value that must be determined 
using the methodology developed by Kempton and Tomic [184] and improved by Noori 
et al., Yang and Tatari, and Yang et al. by considering the applicable degrees of 
uncertainty and other relevant parameters [209,210,5], and by following the calculation 
steps adopted from Noori et al.’s EVRO model [94,184]. EVRO is an optimization model 
previously developed by the authors [94] that uses several previously established 
methodologies in LCA of energy systems [123,211], Multi Criteria Decision Making 
[124,212], Decision Making Under Uncertainty [125], Intelligent Transportation Systems 
[126,213], and Stochastic Optimization [64,128]. The net revenue of using the V2G 
system can be calculated by simply subtracting the cost of the electricity consumed for 
charging from the total revenue earned due to providing V2G services. Capacity 
payments and energy payments are the two main components of total revenue. 
Capacity payments are measured by the grid operator and rely on the vehicle’s 
available time for providing V2G services (plugged time) as well as available power 
capacity parameters. Therefore, Equation (7) is used to calculate the total capacity 
payment revenue: 

Capacity	payment ∗ ∗  (7) 

where Ccap represents each ISO/RTO region’s payment rates for regulation capacity in 
$/kwh, Pdispatch is the available power in kW that could be derived from the vehicle, and 
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Tplug is available time (plugged time) in hours of the vehicle in question for providing 
V2G services. School buses are parked for 18 h to 24 h. However, this range occurs 
due to number of school days, where school buses are available for 18 h a day for 180 
school days of year and 24 h available for rest of the days of a year. Therefore, Tplug 
value range is calculated with the consideration of number of holidays and school days 
in a year. 
 
Grid providers also make separate energy payments, the total revenue of which is 
measured based on the exchanged electricity from regulation signal responses. 
Equations (8) and (9) (presented below) are used to calculate the total energy payment 
revenue: 

Energy payment ∗  (8) 

∗  (9) 

where Celect is the retail electricity price in $/kWh and Edispatch is the total dispatched 
electricity in kWh. Celect value projections for future study years are derived from the 
EVRO model [94]. In the formula for Edispatch (Equation (9)), Ndispatch represents the 
number of regulation cycles, Pdispatch once again represents the available power in kW, 
and Tcycle is the regulation cycle duration in hours. The value of Tcycle is assumed to be a 
random value between 3.6 and 9 min, due to the random occurrence of regulation 
cycles [185]. The number of regulation cycles (Ndispatch) is a randomly selected value 
between 30 cycles and 40 cycles, meaning the V2G system responds to regulation 
request signals 30–40 times [185]. These calculated results are then converted to 
annual values since the results are to be presented on an annual basis for each 
projected study year. In order to present results on an annual basis, all of the 
uncertainties and random selections in the aforementioned calculations are performed 
for 1000 iterations. Finally, the total revenue is the sum of Capacity payments and 
Energy payments as shown in Equation (10): 

Total	Revenue Capacity payment Energy payment (10)

On the other hand, the cost of providing regulation services is calculated with vehicle’s 
battery degradation taken into account. Equation (11) is used to calculate the cost of 
providing V2G services for fleet owners: 

∗  (11)

where Cregu represents the gross cost of providing V2G services (excluding revenue), 
Cbattery is the cost of a new battery in $/kWh, Ebattery is the total amount of energy 
dispatched from the battery throughout its lifetime in kWh, Edispatch is the dispatched 
electricity as previously described in Equations (8) and (9), and Ccapital is the annualized 
capital cost of the battery. The components of the value of Cregu are calculated using 
Equations (12) through (14) below: 

∗  (12)
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∗ ∗  (13)

∗ ∗
1 1

 (14)

where Pcap represents the battery capacity in kWh, Cbat unit is the unit cost of the battery 
in $/kWh, Tbattery is the total number of charging cycles over the battery’s lifetime, Pcap is 
the battery’s capacity in kWh, and DoD is the Depth of Discharge of the battery. 
Moreover, Drate is the discount rate for future years, and m is the lifetime of the battery in 
years. Finally, the net revenue of V2G service can be calculated using Equation (15): 

Net	Revenue	of V2G Service Total revenue  (15)

  
6.3 Data Collection 

6.3.1 Transit and School Bus Specifications 

Transit buses and school buses have different operation conditions and requirements 
and therefore cannot be analyzed as a single bus type, so detailed data is collected on 
diesel and BE fuel options for transit and school buses. Table 6-2 summarizes the 
overall inputs utilized in this research. The analysis and data collection steps used in 
this research are performed for 40’ long diesel and BE transit buses and for Type C 
diesel and BE school buses.  
 
Transit buses and school buses are both assumed to have a lifetime of 12 years. Some 
studies suggest a lifetime of 16 years, but since the American Public Transportation 
Association (APTA) and the Federal Transit Administration (FTA) both assume a 
minimum transit bus lifetime of 12 years, this same assumption is used for purposes of 
this study [214]. Based on this average assumed lifetime, the study period of this study 
is also determined from 2015 to 2027. The average annual mileages of the bus types in 
this study are 37,000 miles for transit buses and 12,000 miles for school buses 
[182,215]. This is a reasonable difference between these two types because transit 
buses are expected to operate seven days a week whereas school buses only operate 
on school days, or 180 days per year on average in the U.S. [183]. Based this annual 
mileage information, the average daily VMTs (DVMT) are calculated for transit and school 
buses. It must be noted that, in addition to regular daily school bus activity, school 
buses can also be deployed for field trip duties, which is not accounted for in the value 
of DVMT calculated in this study. 
 
The initial costs of BE transit and school buses are presented in Table 6-2. The 
significant difference between these initial costs for BE buses is also evident for diesel 
buses. Due to transit buses’ cost incentive requirements (low-floor body type, improved 
powertrain reliability for higher lifetime mileage compared to school buses, etc.), transit 
buses are significantly more expensive than school buses. Compared to BE buses’ 
initial costs, diesel transit buses cost $340,000 each while diesel school buses cost 
$110,000 each [214].  
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Another key parameter that differs significantly between transit and school buses is 
battery capacity. Transit buses have longer-range requirements for uninterrupted 
revenue service compared to the driving cycle ranges school buses. Therefore, the 
maximum weight limit of 4000 lb (1814 kg) for transit buses is often utilized [38]. Recent 
Lithium-Ion (Li-Ion) battery developments allow transit buses to reach driving ranges of 
up to 250 kilometers with a battery capacity of 324 kWh [216]. However, these 
technologies are still in an experimental phase, so battery capacity (Pcap) assumptions 
are made by using transit buses currently in use for transit agencies in the U.S. [4,195]. 
It is even more difficult to make an accurate assumption for the battery capacity of BE-
school buses, since the current deployment of this type is very small in the U.S. as 
opposed to BE transit buses. Noel and McCormack’s (2014) recent study assumes this 
battery capacity (Pcap) to be 80 kWh [182]. In addition to battery capacity, the 
replacement time of the battery over the total vehicle lifetime is also crucial for 
evaluating emission and cost analysis impacts. Moreover, since battery technology is 
constantly in terms of capacity and lifetime aspects, this parameter also has a degree of 
uncertainty that must be taken into account. Therefore, the battery lifetime of transit and 
school buses are included in this study as a range of charging cycles. As shown in 
Table 6-2, this wide range is applicable for both types of buses, and the corresponding 
range references include broad discussions about the V2G effects on battery lifetime. 
The literature is still not clear about the impacts of V2G on battery lifetime, since the 
extent of the depth-of-discharge impacts has not yet been clearly proven [197,217]. 
Emissions from battery production are based on those in Noori et al.’s study, but one to 
three times higher than EPA’s reports on Li-Ion battery results since it considers 
upstream emission impacts of battery production [94,218]. 
 
Fuel economy is one of the key components of any life cycle analysis. Table 6-2 only 
presents the fuel economy ranges for BE bus types, but diesel bus types have their own 
separate fuel economy ranges. BE transit buses have lower fuel economy because the 
passenger payload, number of stops, traffic congestion, climate effects, and other 
relevant factors all have a stronger influence on fuel economy than on the driving cycles 
of school buses. On the other hand, the electricity consumption of BE school bus has 
been tested and reported in Noel and McCormack’s study, where it was found to be as 
low as 0.75 kWh/mile [182], whereas the California King County School District’s BE 
school bus testing project reported an electricity consumption rate of 2 kWh/mile [198]. 
The fuel consumption rates of transit and school diesel buses have been tested in many 
different aspects, and the resulting data is available from multiple sources. Therefore, 
transit diesel bus fuel economy is assumed to vary between 2.82 and 4.14 MPDGE 
(miles per diesel gallon equivalent) and 7 MPDGE for diesel school bus [182,4,219].  
 
Charging facility cost is another important requirement for BE vehicle operations, and 
requires more consideration from fleet owners; in fact, some studies in the available 
literature aim to optimize the number of charging facilities based on cost limitations 
[220]. It is assumed that charging facilities should have Level 3 charging for convenient 
service. Based on these assumptions, the charging facility cost (Cequipment) is assumed 
to be same for school and transit BE buses as presented in Table 6-2. In addition, the 
charging infrastructure’s installation (Cinstallation) and maintenance (Cc-main) costs are 
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gathered separately from Chang et al.’s report [201]. It is also assumed that charging 
infrastructure requires annual maintenance at a cost of 5% of the initial equipment cost. 
The last cost item considered for cash flow calculations is the cost of the necessary 
upgrades to the vehicle and to the charging facility for accommodating V2G services. 
Based on Kempton and Tomic’s study, the V2G system equipment cost (CV2G) for buses 
is expected to be similar to that of other vehicle types from the research, as shown in 
Table 6-2 [184]. 
 

6.3.2 Vehicle-to-Grid System Specifications 

The total time in which a vehicle is available to provide V2G services (Tplug) is one of the 
key parameters influencing the total potential revenue that operator could gain from 
V2G system. From the values of Tplug summarized in Table 6-2, it can be assumed that 
school buses could generate more V2G service revenue, while the charging behavior of 
transit buses during their normal business hours (opportunity charging, as previously 
discussed) is not applicable for V2G services, meaning that transit buses can only 
provide V2G services during overnight charging. 
 
Pveh is another key parameter for calculating the overall revenue from BE buses, and is 
to be determined based on Kempton and Tomic’s study [184]. Equation (16) below has 
been adopted from their study and applied to the variables. For the average fuel 
economy (FE) values, Pveh could be calculated as 132 kW for BE school buses and 9.3 
kW for BE transit buses with the consideration of battery to grid conversion efficiency 
factor (Xconvert). The significantly low Pveh value for transit bus is due to the assumption 
that transit buses return to their charging facilities with a low remaining battery power 
percentage. On the other hand, school buses use only a small portion of their battery 
storage power for two-way trip operations, and therefore return to their charging 
facilities with more available battery power: 

∗
 

(16)

In addition to Pveh values, Pdispatch is another factor that determines the allowable power 
transfer. It is possible for a vehicle’s battery to provide 200 kW, but if it is connected to a 
Level 1 charger, this power transfer will be limited to the charger’s maximum electricity 
transfer capacity. As seen in Table 6-2, Pdispatch is assumed to range from 70 kW to 140 
kW. Kempton and Tomic’s calculation method for V2G service revenue states that the 
higher value between Pveh and Pdispatch can be used for later steps [184]. Therefore, Pveh 
can be disregarded in this study, and the aforementioned Pdispatch value range is used 
for calculations. 
 
6.4 Results 

6.4.1 Cash Flow Results 

The ISO/RTO regions are used as the scope of this study, for which a V2G system 
application analysis is performed for BE transit and school buses in order to compare 
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them with internal combustion engine diesel transit and school buses. BE bus adoption 
is still in a relatively early stage for transit and school bus fleet operators due to their 
high purchase prices compared to diesel and other alternative fuel options. Hence, a 
cumulative cash flow analysis is performed in this study for different bus types over their 
full lifetimes. 
 
Figure 6.2 presents the transit bus cash flow results for diesel and BE fuel options. The 
initial cost of a BE transit bus is almost three times higher than that of a diesel transit 
bus, and thus diesel transit buses have lower cumulative cash flow results than BE 
transit buses. Although the results in Figure 6.2 accounted for the V2G system 
revenues for BE transit buses, and even though diesel transit buses were shown to 
accumulate significant total lifetime cost, BE transit buses are still not cost feasible. This 
study assumes that vehicles will be sold at the end of their lifetimes for their resale 
value, and this negative value on cash flow is shown to be seen significant for BE buses 
as opposed to diesel buses, again due to the high initial cost requirements of BE buses. 
Diesel prices are considered with regional projections in the analysis, but since this 
accounts for the only regional difference in terms of diesel transit bus operation, these 
regional projections do not yield any significant difference so only average value of 
cumulative cash flow for diesel transit bus is shown in figure. However, these same 
regional impacts yielded moderate differences (i.e., the regional difference vary 
between 7% and14%) in terms of BE bus operation due to regional electricity price 
variations and its related dependent variables. The New York (NYISO) and California 
(CAISO) state regions provide relatively close results for BE transit bus operation, both 
demonstrating lower costs than other regions since they are the only two states that 
provide tax incentives for BE bus purchases. However, these tax incentives are still far 
from making BE transit bus competitive with diesel transit bus for overall cash flow 
analysis. 
 
Same as the transit bus results in Figure 6.2, the school bus cash flow results for the 
diesel and BE fuel options are compared in Figure 6.3. In contrast to the transit bus 
results, BE school buses demonstrated lower cost results compared to diesel school 
buses, at the end of their 12-year lifetime. This is an interesting finding that although 
diesel school bus has lower initial cost; cumulative cash flow value becomes higher than 
the value of BE school buses after 4th year in NYISO and CAISO regions where tax 
incentives are available. Also, like in Figure 6.2, regional variations had no significant 
effect on the results in Figure 6.3 due to the lower diesel price variability between 
regions compared to the corresponding electricity price variability so diesel school 
buses’ cumulative cash flow results are presented as average for regions. Moreover, 
also like Figure 6.2, Figure 6.3 demonstrated lower cash flow results for the NYISO and 
CAISO regions than those of any other region. Conversely, BE bus operation costs are 
higher for transit and school bus options in the New England ISO (ISO-NE) region than 
in any other region. 
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Figure 6.2 Cumulative cash flow of transit diesel (average) and BE (regional) buses. 

 
Figure 6.3 Cumulative cash flow of school diesel (average) and BE (regional) buses. 

Both figures 6.2 and 6.3 presents the cumulative cash flow analysis for transit and 
school buses, however it is also crucial to present the components of this cash flow 
analysis an overall life cycle cost. Table 6-3 depicts the components of costs and 
revenues that are spent and earned throughout the lifetime of all bus types in CAISO 
region. Life cycle cost results indicate that although BE buses require two or three times 
higher initial costs compared to diesel bus types, overall net costs are less than diesel 
bus ownership for BE buses. Therefore, it can be clearly stated that operating BE buses 
with V2G technology and allowance of government incentives cost less than traditional 
diesel buses on top of environmental benefits. In addition to V2G related revenues, this 
significance difference can be explained with several more aspects such as fuel cost of 
diesel buses are four to six times higher than BE buses due to low fuel efficiency and 
higher unit cost of diesel. Maintenance cost is another component that affect life cycle 
cost of diesel buses compared to BE buses. It should be noted here that battery 
replacement due to operation and battery degradation costs due to V2G service cause 
critical increase on results, however, as it stated for initial cost difference, those costs 
can be eliminated with V2G revenues and government incentives. 
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Table 6-3 Average lifetime cash flow analysis of transit and school buses in CAISO 
region. 

Value Type 
School 
Bus- BE 

School  
Bus- 
Diesel 

Transit  
Bus- BE 

Transit  
Bus- 
Diesel 

Purchase price (Cbus) $230,000  $110,000 $800,000 $340,000 

Lifetime fuel cost (diesel or electricity) $21,915 $82,494 $87,181 $500,113 

Maintenance cost (CB-Main) $66,814 $140,461 $311,892 $415,856 

Charging station purchase cost (Cinstallation + 

Cequipment) 
$23,446 $0 $23,587 $0 

Charging station maintenance cost (CC-Main) $8971 $0 $8979 $0 

Battery replacement cost (due to operation) 

(Cbattery) 
$29,819 

$0 
$76,073 

$0 

V2G capacity payment revenue −$229,498 $0 −$96,261 $0 

V2G energy payment revenue (exchanged 

electricity) 
−$56,329 

$0 
−$56,469 $0 

V2G cost (V2G equipment + battery 

degradation) (Cregu) 
$79,285 

$0 
$79,423 

$0 

Resale value −$32,658 −$17,199 −$106,123 −$43,810 

Government incentives (if applicable) −$84,876 $0 −$106,146 $0 

Net value $56,888 $315,756 $1,022,135 $1,212,158 

 

The initial cost difference for BE and diesel school buses is not as significant as that for 
transit buses, but the cost-effective lifetime performance of BE school buses compared 
to diesel school buses cannot be explained with only this reason. The primary focus of 
this study is to demonstrate the potential V2G system benefits, as the resulting revenue 
for fleet owners will also have an influence on the cash flow of a BE school bus. 
Therefore, Figure 6.4 depicts the net revenue results for transit and school bus options 
with V2G service revenues taken into account. Due to the operation specifications of a 
typical school bus, school buses are highlighted as a better candidate than transit buses 
for offering V2G services. Figure 6.4 also indicates parallel results to support this theory 
that school buses provide significantly higher revenues for fleet owner than transit 
buses. Out of the five regions considered in this study, the New York-ISO region 
provides the highest rate of revenue on average for both bus types due to its higher 
capacity price (Ccap) ranges compared to other regions. Therefore, it can be concluded 
that there is a balancing act between school and transit buses in terms of net available 
revenues from V2G services, since school bus V2G revenues are much higher than 
those of transit buses whereas the battery capacity of transit buses is much higher than 
that of school buses. Hence, this balancing act again highlights the importance of the 
value of Tplug, which represents the available V2G service time for BE buses. 
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Figure 6.4 Regional net revenue of V2G service for transit (a) and school (b) bus 

options. 

6.4.2 Environmental Emission Results 

There are a significant number of cited studies from available literature that present 
environmental life cycle assessment analysis results for diesel and BE transit buses and 
school buses. Furthermore, using V2G technology could eliminate the air emissions 
caused by combustion power plants (which are not environmentally efficient) when 
accommodating high electricity demand fluctuations. Hence, per one of the goals of this 
study, Figure 6.5 presents the potential regional average cumulative environmental 
emission reductions from the use of V2G services from transit and school buses over 
their entire lifetimes. It should be noted that Figure 6.5 indicates the cumulative GHG 
emission benefits in year 2027, which covers the whole lifetimes of BE transit buses and 
school buses. Figure 6.5 shows that BE transit buses using the V2G system can help to 
eliminate 1000 metric tons of CO2-equivalent GHG emissions on average over its 
lifetime. Similar to the net revenue results in Figure 6.4, the emission benefits are also 
higher for school buses than for transit buses. However, there is an interesting point that 
it should be highlighted for Figures 6.4 and 6.5. V2G service related BE school bus net 
revenues are almost three times higher than BE transit buses and this difference is 
almost one-and-half times more for emissions savings. The reason behind this 
difference is basically due to the consideration of battery degradation. Both of these 
calculations account for battery degradation and related battery replacement cost and 
emissions are not linearly influencing the net revenue and emission savings for this 
analysis. Moreover, the impact of battery replacement impacts in terms of emissions 
and cost are significantly different and it is more sensitive to emission impacts. 
Therefore, net revenue benefits of BE school buses are much higher than emission 
saving benefits.  
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Figure 6.5 Regional average of cumulative GHG emission savings in 2027 for transit 

and school battery electric (BE) bus due to V2G availability [tons]. 

6.4.3 Air Pollution Externality Results 

Finally, the air emission externalities for BE and diesel transit and school buses are 
presented in Figure 6.6. In addition to the economic and GHG emission impacts, air 
emission externalities are another crucial indicator that should be defined for every air 
emission source, especially when said source operates/emits near highly populated 
areas. It is important to note that tailpipe emissions contribute the most to these 
externalities, as the tailpipe emissions for transit and school buses are assumed to 
occur primarily in and near highly populated areas. Due to high annual mileage values, 
transit buses cause significantly higher air emission externalities than school buses. 

 
Figure 6.6 Total air pollution externalities of bus and fuel types. 

In addition to reducing the public health costs of all of these air emission types, the V2G 
system could eliminate some of the emissions from combustion power plants, as 
presented in Figure 6.5. Therefore, the V2G system can provide enough electricity back 
to the grid to reduce the mean air externality value of transit BE buses by $13,000, 
which reduce it to almost the maximum air externality rate of diesel school buses 
(please see red-dotted lines on Figure 6.6 for V2G related reduction). More 
interestingly, V2G services provided from BE school buses effectively eliminated their 
mean externality value, and even provided a net benefit due to less electricity 
generation and emissions from power plants. However, it should be noted that negative 
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externality values do not necessarily mean that BE school bus operations can provide 
negative emissions, but it does mean that V2G systems can neutralize all of the 
emission impacts of electricity consumption from BE school bus operations. Hence, 
Figure 6.6 clearly highlights the potential benefits of V2G technology in terms of public 
health cost reductions. 
 
6.5 Discussion 

V2G technology is a relatively new approach to eliminating some of the barriers 
hindering the rapid adoption of electric vehicles. Current literature highlights V2G 
systems as a promising technological application, as they provide a source of revenue 
for electric vehicle owners as well as an efficient electricity source for utility providers. 
V2G technology is also emerging as a powerful environmental solution, as it can be 
used to reduce GHG emissions from the two highest-contributing sectors (transportation 
and power generation) to such emissions in the U.S. 
 
This study is multi-disciplinary in many ways such as analyzing not only transportation 
sector related environmental emissions but also investigating the upstream 
environmental emissions of battery electric buses, economic impacts (i.e., cash flow), 
and air pollutant externalities for public health with downstream and upstream 
consideration. Besides, this analysis also integrated the V2G service availability where 
power generation sector could also eliminate some of the environmental emissions. The 
multi-disciplinary impacts of the integration of these two sectors is not limited to 
environmental and economic matters, but also includes integrity and reliability of 
electricity grid and resiliency of power supply during the extreme events. In other words, 
this study interacts with the researches where V2G service can increase the reliability of 
electricity grid and provide energy for vehicle user’s home, facility etc. during extreme 
events of long power outages. Furthermore, as the results indicated, heavy-duty 
vehicles such as buses have potential to provide these benefits more than passenger 
vehicles that have been studied in current literature broadly for V2G applications. 
 

Therefore, this study investigated possible V2G applications in five different ISO/RTO 
regions for transit buses and school buses, and performed an additional comparison to 
internal combustion engine diesel transit and school buses. Based on the methods and 
data used in this research, the results in this study indicated the following key findings: 

1. The cash flow analysis results in this study indicated that BE transit buses are not 
economically feasible to operate even with V2G net revenues taken into account, 
and the initial purchase price of a BE transit bus is especially discouraging for fleet 
owners compared to those of diesel buses and buses with other alternative fuel 
options. However, this could change in the near future with battery development 
and market demand trends for alternative fuel transit buses. On the other hand, BE 
school buses effectively eliminated their high initial cost requirements throughout 
their lifetimes, whereas diesel school buses did not. 

2. Transit buses also yielded less net revenue for fleet owners from V2G service. 
However, this result does not mean that V2G services are not feasible or applicable 
for BE transit buses. It should be noted that the primary duty of transit buses is to 
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serve society for reliable public transportation and to provide a source of revenue 
for transit agencies. It is therefore still beneficial for transit agencies to collect 
additional revenue from BE transit buses even while they are not in use. 
Conversely, with extensive cash flow benefits, BE school buses can easily 
substitute diesel school buses for the fleet owners’ cost perspective. 

3. If the total number of transit and school bus fleets in the U.S. is taken into account, 
the overall potential of V2G system applications and BE bus adoption can be 
significant. However, it is not clear if the current electricity generation and 
distribution infrastructure could support such an adoption. Therefore, BE bus 
deployment levels should be studied further and optimized parallel to current 
development trends in the utility generation and supply system. 

4. In addition to V2G technology, there are other new technologies similar to V2G that 
provide power as needed from plugged-in electric vehicles back to a home (V2H) or 
back to a building (V2B). These similar technologies could be an interesting future 
area of study through which to present the possible benefits of providing electricity 
from an electric vehicle fleet back to the workplace buildings (administrative, 
maintenance, etc.) of a fleet operator. That said, as highlighted in this research, 
buses have a significant amount of power available from their batteries compared to 
any passenger vehicle’s capacity. Thus, heavy-duty vehicles are more capable of 
providing power support to a building than light-duty vehicles are. This concept can 
also lead to another research area where there is potential of V2G, V2H, or V2B 
technologies to enhance the resiliency of grid/building during extreme events. 

5. The air emission externality results in this study are especially noteworthy because 
this study focuses on vehicles operating in or near highly populated areas. This is 
particularly true for school buses, the tailpipe emissions of which are emitted mainly 
near a non-adult population. Moreover, since air emission externalities are not 
defined specifically for non-adult populations, the public health damage rates for 
school bus emissions could be even higher than the average rates used in this 
study. Also, although electricity generation does not usually occur near populated 
areas, conventional power generation methods still have high emission rates of 
hazardous pollutants due to the high fossil fuel dependency of the U.S. power 
generation sector. These per-kWh emission rates for electricity generation are 
expected to decrease in future years as the U.S. invests more and more in 
renewable energy sources and technologies. However, this study shows that V2G 
technology can already provide significant air emission externality reduction benefits 
from BE transit buses and school buses. 

BE transit and school bus examples are still largely in an experimental phase in the 
U.S., and so there are still data limitations regarding their operation and especially with 
respect to V2G application specifications; for this same reason, only five ISO/RTO 
regions could be considered in this research due to a lack of usable data for other 
regions. This study could therefore be extended in the future with the inclusion of other 
U.S. regions as well as additional data on renewable energy deployments. 
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7.0 Getting to net zero energy building: investigating the role of 
vehicle to home technology 

7.1 Introduction  

The world’s rapidly growing energy consumption rates, coupled with the associated 
environmental impacts of such energy consumption, has raised concerns in different 
communities and among researchers, engineers, and even politicians [221]5.  As 
buildings are responsible for more than 40% of primary energy usage and 70% of 
overall electricity usage in the U.S., policy-makers must quickly take action to reduce 
the energy demand of buildings [222]. The energy consumption of buildings is 
responsible for 38% of CO2 emissions to the atmosphere, 52% of SO2 emissions, and 
20% of NOx emissions [223]. At the same time, the energy usage of buildings faces an 
increasing trend in the future, considering its existing nexus with population and 
economic development [221]. Therefore, moving toward sustainability requires 
minimizing the resource consumption of buildings, meaning that the energy 
performance of buildings should be maximized without sacrificing their comfort levels 
[224].  

To design energy-efficient buildings, several studies are available that have investigated 
factors such as thermal insulation and building envelope, age, size, lighting and lighting 
control systems, outdoor weather conditions, HVAC equipment, building orientation, 
urban texture, and other applicable factors in an effort to reduce the energy 
consumption of a particular building [225–228]. Among these is a study by Balaras et 
al., who investigated the effect of a building’s thermal insulation (including floor, window, 
wall, and roof insulation) on the energy performance of the building [229]. Other studies 
investigated the potential of smart occupancy sensors to reduce a building’s energy 
consumption [230–232]. In addition, since HVAC system management is another major 
concern when designing an energy-efficient building, some studies have specifically 
investigated the influence of HVAC system management on the energy consumption of 
buildings [233–235]. 

Most of the above-mentioned studies have focused on specific aspects of a typical 
building’s energy consumption, and have tried to simulate and analyze the effect of 
those specific components on the energy demand of such a building. However, since 
one of the goals of this study is to design an energy-efficient building, it is therefore 
necessary to simultaneously consider all of the most important factors affecting a 
building’s energy consumption in an optimization analysis to select the best design 
alternatives. In this regard, it is necessary to optimize the parameters that influence the 
energy and investment costs and the thermal comfort of such a building (envelope, 
HVAC, etc.) [236]. However, achieving this goal requires a thorough study to find better 
design alternatives that satisfy a variety of conflicting criteria, such as those pertaining 

                                                 
5 The contents of this section were partly published in Alirezaei, M., Noori, M., and Tatari, O. (2016). 
“Getting to net zero energy building: investigating the role of vehicle to home technology.” Energy and 
Buildings, Elsevier. 2014 IF: 2.884. DOI: 10.1016/j.enbuild.2016.08.044  
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to economic and environmental performance [223], so as to help designers overcome 
the drawbacks of trial-and-error with simulation alone.  

There are several studies in available literature on optimization approaches and their 
suitability for minimizing a building’s energy consumption [237]. For instance, 
Fesanghary et al. investigated the application of a multi-objective optimization model 
based on a harmony search algorithm to find an optimal building envelope design to 
minimize life cycle costs and emissions [238]. In addition, Hamdy et al. proposed a 
modified multi-objective optimization approach based on a Genetic Algorithm to design 
a low-emission, cost-effective dwelling [239]. It has also been noted that minimizing 
energy consumption should be taken into consideration along with other constraints 
such as costs and the comfort levels within buildings [240]. Therefore, this study uses 
an optimization approach through the use of a built-in optimization tool developed by 
Designbuilder [241]. With this optimization tool, it is possible to identify different design 
alternatives with various combinations of costs, energy consumption rates, and comfort 
levels, using the Genetic Algorithm (GA) method to perform a multi-objective 
optimization analysis.  

Consuming less energy through an optimization process and the selection of the best 
available design alternatives will be a major step toward a sustainable community. 
However, in order to fully implement the concept of sustainability, new plans must be 
devised to integrate renewable energy sources into the energy portfolio of a building.  
Therefore, developing a new methodology with which to minimize the energy 
consumption of a building and integrating renewable energy sources with the main 
electricity source (the power grid) will both contribute greatly to a more sustainable 
community [242]. In this regard, when moving toward sustainability, not only is it 
important to reduce the required energy of the building in question but also to find ways 
to implement new and cleaner energy sources whenever possible. For this reason, 
shifting the building’s energy sources away from the electricity grid (which tends to be 
the most likely source to emit air pollutants) in favor of onsite renewable energy sources 
seems to be inevitable. The concept of the net zero energy building (NZEB) has evolved 
primarily from this idea.  

7.1.1 Net Zero Energy Building (NZEB) 

The goal of the NZEB concept is to reach a point where a building’s onsite electricity 
production can supply its entire electricity demand [243]. The NZEB concept is no 
longer perceived as a purely theoretical ideal for future applications, but as a realistic 
and achievable goal to reduce buildings’ energy consumption levels and to 
subsequently mitigate CO2 emissions from the building sector [244]. Growing attention 
to the NZEB concept can be seen in a number of buildings constructed based on this 
theory as practical examples thereof [245–248]. The Energy Independence and Security 
Act (EISA) of 2007 authorizes the Net-Zero Energy Commercial Building Initiative to 
support the goal of net zero energy consumption for all new commercial buildings by 
2030, and to extend this goal to reach a net-zero-energy target for 50% of U.S. 
commercial buildings by 2040 and for all U.S. commercial buildings by 2050 [249]. The 
Energy Performance of Buildings Directive (EPBD), published in 2002, obliged all EU 
countries to enhance their buildings’ regulations and to introduce energy certification 
schemes for buildings [250]. To this end, the EPBD Directive of 2010 has set a target of 
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“nearly zero energy buildings” by 2018 for all public buildings and by 2020 for all new 
buildings [251]. As can be seen from these goals, the international community now 
regards the NZEB concept as a viable solution to the increasing energy consumption 
levels and CO2 emissions of today’s buildings.  

Across all definitions and classifications for the NZEB, one basic design rule remains 
constant; address demand first, and then supply [249]. New types of renewable energy 
sources should be employed for a NZEB, and in this regard, many studies have 
investigated the use of various renewable energy sources (solar panels, wind turbines, 
geothermal heat pumps, etc.) to supply the energy demand of buildings. For example, 
Charron investigated the use of thermal and solar photovoltaic (PV) technologies to 
generate as much energy as a typical home would need on annual basis, in what can 
be referred as a net zero energy solar home [252]. The life cycle costs of such homes is 
also an important topic to discuss, and has been investigated in different studies [253]. 
Another study by Iqbal investigated the feasibility of using wind energy in a net-zero-
energy home, taking into account critical parameters such as wind speed [254]. Some 
studies have even tried to combine different types of renewable energy sources to 
design a NZEB. For instance, Melissa et al. investigated the power generated through 
solar thermal energy and wind power to supply the energy demand of a building [255], 
while Noori et al. investigated the socio-economic and environmental impacts of 
producing electricity for buildings using wind power plants [212].  

In addition to renewable energy sources, the role of vehicles in supplying the energy 
demand of buildings is now yet another possibility to be investigated. With the help of 
newly introduced technologies, it is possible to use vehicles (esp. household vehicles) 
as potential energy sources for buildings. These technologies and their applications are 
discussed in further detail in the next section.  

7.1.2 Vehicle to Home (V2H) Technology 

In addition to renewable energy sources (solar panels, wind turbines, etc.), alternative-
fuel vehicles can also be considered as viable energy sources to supply the power 
demand of a building. Existing bi-directional charging technology allows intelligent 
charging to be taken to a new level; with the help of vehicle-to-home (V2H) and vehicle-
to-grid (V2G) technologies, the use of electric vehicles (EVs) can be considered an 
opportunity to use EV networks as power sources in and of themselves [256]. Using this 
technology in conjunction with other renewable energy sources makes the overall 
system more energy-efficient by storing excess energy generation during off-peak hours 
for use whenever the available power generation is not sufficient to meet the energy 
demand. Moreover, V2H technologies use idle EV battery power as a grid storage unit 
with which to handle fluctuating renewable electric power supply.  

Different studies in this regard have examined this technology from different 
perspectives. One such study conducted by Haines et al. developed a simple V2H 
model for a home’s daily energy demand [256]. Another study by Liu et al. introduced 
different methodologies for using V2H, V2G, and vehicle-to-vehicle (V2V) technologies 
[257]. Cvetkovic et al. presented a small grid-interactive distributed energy resource 
system consisting of photovoltaic sources, plug-in hybrid electric vehicles (PHEVs), and 
various local loads [258]. Moreover, Noori et al. investigated the regional net revenue 
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and emission savings that may be possible with the use of V2G technology [259]. The 
life cycle cost (LCC), environmental impacts, and market penetration of EVs are also 
important areas to consider when performing a thorough life cycle analysis of the 
system as a whole [94,260]. 

V2H technology enables users to connect a variable number of vehicles to a building’s 
power distribution board, making it possible to supply the building’s power demand at 
nighttime (when the building’s electricity usage is usually at its peak). This is 
accomplished by depleting the stored power in the batteries of electric vehicles and then 
charging the battery when the power demand is low, using electricity from the power 
grid or from other renewable energy sources (solar panels, wind turbines, etc.). This 
system can also be used as a reliable energy source in case of an emergency such as 
a power outage. In this regard, government incentives can be implemented to 
compensate individuals and businesses for the increased initial costs of this technology. 
From the consumer’s viewpoint, this means that cars are usable for mobile energy 
storage and not just for transportation purposes, being able to provide power to a 
building and thereby alleviate the corresponding stress on the conventional power grid. 
A schematic of the overall concept considered in this study is shown in Figure 7.1 
below.  

 

Figure 7.1 Net Zero Energy Building.  

7.2 Methodology 

The general methodology of this study is illustrated in Figure 7.2 below, which 
summarizes the different steps taken to achieve a completed NZEB design. The overall 
process starts with modeling the building itself, followed by an energy analysis and an 
optimization analysis in order to design an energy efficient building. Next, solar power 
and an EV battery are integrated in conjunction with the main energy source of the 
designed building (grid electricity), and the resulting interactions within this system as a 
whole are controlled using the developed algorithm.  
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Figure 7.2 Developed Methodology  

7.2.1 Model Development 

For modeling purposes, the building modeled in this study is a two-story residential 
building with a total area of 1,184 square feet and a net conditioned building area of 
1,074 square feet. This model can be seen in Figure 7.3. The detailed specifications of 
the modeled building are summarized in Table 7-1.  

Table 7-1 Modeled Building’s Specifications 

Parameters Values and types 

Gross Wall Area  1,239 sq ft [115 sq m] 
Window Opening Area  295 sq ft [27.4 sq m] 
Gross Window-Wall 
Ratio [%] 

23.80 

Gross Roof Area  632.60 sq ft [58.77 sq m] 
Skylight Area  50.30 sq ft [4.67 sq m] 
Skylight-Roof Ratio [%] 7.95 

Weather File 
Orlando Sanford Airport FL USA TMY3 
WMO#=722057 

Latitude [deg] 28.78 
Longitude [deg] -81.3 
HVAC system Ground Source Heat Pump (GSHP) 
Lighting system Fluorescent, Compact (CFL) 

 

In the next step, the developed model is used to evaluate the energy performance of the 
building. The Department of Energy (DOE) recommends a complex variety of tools and 
software for different design purposes, and one of the most comprehensive software 
programs currently available is EnergyPlus, which is designed to simulate and assess 
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the energy consumption of the entire building [261]. Architects, engineers, and 
researchers have been able to use EnergyPlus to model the energy consumption of a 
designed building, (including energy consumption from heating, cooling, ventilation, 
lighting, and water usage) while also providing users with a broad range of alternatives 
for each component [262]. However, EnergyPlus reads inputs and writes outputs to text 
files, which can make it somewhat difficult and time-consuming to work with. In order to 
increase the usability of this software and make it more understandable for ordinary 
engineers, several graphical interfaces for EnergyPlus have been introduced. The 
graphical interface for EnergyPlus used in this study is Designbuilder, which accounts 
for the weather conditions of a particular region when performing an energy 
performance analysis, allowing the analysis in this study to account for average annual 
sunshine, wind speed, temperature, and all weather-related situations in addition to the 
other factors previously discussed [263].  

 

Figure 7.3 Developed Model in Designbuilder 

7.2.2 Optimization of the Building’s Energy Performance  

Once the model is defined and the applicable weather database file is imported, the 
next step is to analyze the building’s energy performance. As mentioned earlier, the 
process of choosing the best design options is a time-consuming process that requires 
a powerful database to enable designers to choose the best design alternative, while 
also considering relevant design constraints during the search for an optimal solution. 
Regarding the energy performance of a building, many different factors should be 
considered simultaneously in order to find an optimal solution; for purposes of this 
study, an optimal design should provide a high-quality, comfortable building fully 
compliant with the applicable standards and codes while also reducing the initial cost, 
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operational energy usage, and environmental impacts of the building [264]. In this 
regard, an optimization analysis is performed in order to select the best building design 
options with which to minimize the energy consumption of the building in question 
without compromising any more than necessary in terms of cost, environmental 
impacts, and (more importantly) the comfort of the residents. 

The process of finding the best design alternatives can be very difficult, especially with 
respect to conflict areas such as those related to economic and environmental 
performance levels [265]. The method used for this purpose should be chosen in a way 
that allows for a multi-objective optimization and also works relatively well given the 
non-explicit nature of the applicable objective functions [266]. Designbuilder provides a 
user-friendly interface that enables engineers to compare a set of different alternative 
design options for building envelopes (wall insulation, glazing type, etc.) as well as 
different heating and cooling systems, using the Genetic Algorithm (GA) multi-objective 
optimization method to select the best design alternatives. It is worth mentioning, 
however, that the Genetic Algorithm method does not guarantee the optimal solution, 
but instead finds an approximate solution to the optimization problem [42,43]. 

In this regard, more than 66% of the energy consumption of residential buildings is 
related to HVAC and lighting systems [222]. In this specific case study, considering the 
weather conditions in Orlando, cooling and lighting loads are expected to have 
dominant shares in the overall energy consumption of the building, which would match 
with the preliminary results of the energy analysis of the building in question. Therefore, 
in order to optimize the energy consumption of the building, more emphasis is placed on 
testing different HVAC and lighting systems to find an optimal solution that reduces 
energy consumption as much as possible. Figure 7.4 shows the results of this 
optimization analysis with different design variables and objective functions. In this 
figure, the results of the GA optimization method are shown as a set of optimal 
solutions, but the best design method with the least amount of energy consumption and 
the lowest cost can still be derived as a result of the aforementioned optimization 
analysis. 
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Figure 7.4 Optimization Analysis Results  

As seen in Figure 7.4, a set of different colorful points is illustrated in this graph, with 
each point representing a separate design method with different HVAC and lighting 
systems. In general, three main areas must be considered when optimizing the energy 
consumption of the building: total site energy consumption, capital cost, and comfort 
level. For this purpose, the parameter values of the optimization analysis are set in a 
way that minimize the capital cost and total onsite energy consumption of the building. 
Clearly, as the system becomes more efficient, the energy consumption of the building 
decreases, but the capital cost may increase. On the other hand, ASHRAE Standard 
55-2013 states that, for thermal comfort, the temperature in the building may range 
between 67°F and 82°F (approximately 19°C and 27°C, respectively) [268]. In order to 
ensure an acceptable level of comfort in the building, the comfort level is considered as 
a constraint in the optimization analysis, meaning that the only acceptable design 
methods are those that can ensure a comfortable temperature within the specified 
ranges; the green points in Figure 7.4 indicate the solutions corresponding to these 
designs. The red points represent the design methods that are optimal in terms of both 
capital cost and energy consumption, but fail to provide the desired comfort level.  

During the optimization analysis, approximately 1,990 design set points were tested, 
and based on the results, 6 of these points are found to be acceptable for consideration 
as the optimal design methods. The specifications and optimization results for these 6 
designs are summarized in Table 7-2.    
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Table 7-2 Optimization Analysis Iterations 

HVAC template Lighting template 
Cooling 
system 
(COP) 

Onsite 
energy 
consump
tion 
(kWh) 

Capital 
cost 
(Capex) 
(USD) 

Comfort 
Temp 
(°C) in 
building 

Air to Water Heat 
Pump (ASHP), 
Convectors, Nat 
Vent 

T8 Fluorescent - triphosphor - with 
STEPPED dimming daylighting control 

2.63 5,336 186,203 27.75 

Natural 
ventilation - No 
Heating/Cooling 

T8 Fluorescent - triphosphor - with 
STEPPED dimming daylighting control 

3.58 6,659 161,514 27.69 

Natural 
ventilation - No 
Heating/Cooling 

T8 (25mm diam) Fluorescent - 
triphosphor - with ON/OFF dimming 
daylighting control 

3.32 6,719 170,000 27.71 

Electric 
Convectors, Nat 
Vent 

LED with linear control 2.76 6,069 181,917 27.6 

Air to Water Heat 
Pump (ASHP), 
Convectors, Nat 
Vent 

LED with linear control 2.69 4,918 190,489 27.6 

Natural 
ventilation - No 
Heating/Cooling 

LED with linear control 3.12 6,235 165,800 27.54 

The above table describes the most optimal design points, such that their respective 
capital costs and energy consumption levels are both optimized while also ensuring that 
the basic requirements in terms of thermal comfort are met. In order to select the most 
efficient system among these 6 designs, the results of a separate energy analysis have 
first been derived for each design. Afterward, by comparing the discomfort hours of 
different systems based on ASHRAE 55-2004, the system with the lowest amount of 
total discomfort hours has been selected as the final optimal design. Now, after 
reducing the energy consumption of the building, the next step is to devise a system 
with which to supply the required power to the building.   

7.2.3 . Power Supply System  

In the following two sections, each of the energy sources chosen for the hypothetical 
building in this research (solar power and electric vehicles) are described in further 
detail.  

7.2.3.1 Solar Power 

The sun has produced energy for billions of years, and the energy in the sun’s rays as 
they reach the earth can be converted into electricity through Photovoltaic (PV) cells, 
often better known as solar cells [269].  Solar energy is no longer viewed as a minor 
contributor to the nationwide energy grid mixture of the U.S., as it used to be in previous 
years due to high costs and other practical constraints [270]. Photovoltaic (PV) systems 
are like any other electrical power generation system, with some differences in the 
equipment used as opposed to the standard equipment for conventional 
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electromechanical generation systems [271]. A basic diagram of PV systems is 
presented in Figure 7.5 below.  

 

Figure 7.5 PV System Components  

In order to convert solar energy to base-load power, excess power that is produced 
during sunny hours of a day must be stored for use during nighttime (on-peak) hours 
[270]. In this study, in order to consider solar energy as a part of a power supply 
system, a series of solar panels with a total area of 108 square feet is modeled on the 
roof of the building, as indicated by the dark blue areas in Figure 7.3, and each solar 
panel works as a separate electricity generator. The modeled solar panels generate DC 
electricity, which must be converted to AC electricity so that the generated power can 
be used for the building’s appliances and stored in a battery designed to store AC 
power, which is the most widely available battery type for consumers. In short, the 
operation scheme of the solar panels is designed to generate electricity regardless of 
the energy demand at any particular time, while any excess amount of this generated 
electricity can be transferred to an EV battery and then stored in the main battery.  

In this study, the solar panels are placed on top of the roof of the building in order to 
simulate the worst-case scenario in which the building in question is surrounded by 
other buildings, although it must be noted that, in many cases, it is possible to use the 
backyard and/or the front yard of the building to install these panels and generate 
electricity. The amount of solar energy generated with the solar panels depends on the 
properties of the modeled solar panels; detailed specifications for the solar panels in 
this study are presented in Table 7-3.  
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Table 7-3 Solar Panel Characteristics 

Parameter  Characteristics  
Solar collector type Photovoltaic  
Performance type Simple  
Performance model PV with constant efficiency of 0.15 
Heat transfer integration mode  Decoupled  
Material  Bitumen felt  
Area  108 sq ft [10 sq m] 

Moreover, the amount of generated solar energy depends on the time of day, the 
amount of incoming solar radiation, and the angle of the solar panels with respect to the 
sun. All of these parameters have been considered when analyzing the solar power 
generation for the building. In order to better understand the way that the modeled 
system interacts with the position of the sun, a schematic view of the analysis is shown 
in Figure 7.6. In the example illustrated in the figure, the position of the sun (sun-path 
diagram) is shown for July 15th at 11 A.M. 

 

 

Figure 7.6 Schematic View of Sun-Path Diagram  
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Cost-related issues pertaining solely to solar power are beyond the scope of this study, 
and are not included in the results because the results can vary significantly depending 
on the boundaries of the cost analysis, and so a separate study is needed to fully 
investigate costs specific to solar electricity. That said, it is worth mentioning that the 
production price of solar energy has continuously decreased over the past few years, 
having dropped from 21.4 cents/kWh in 2010 to 11.2 cents/kWh in 2013 [272]. In order 
to make solar power more cost-competitive with traditional energy sources, a target has 
been set to reduce this price to 6 cents/kWh, which is now an achievable target given 
the current decreasing trend in prices as observed from 2010 to 2013 [272]. However, 
generating solar power can also have direct economic benefits in addition to the indirect 
economic advantage of reducing utility bills. For example, in Orlando, FL, some utility 
companies offer a credit to customers who generate solar energy ($0.05 per kWh of 
solar power generated), and if any such electricity can be transferred to the main power 
grid, utility companies typically buy this electricity for the same retail price.  

7.2.3.2 Electric Vehicle 

As discussed earlier, EVs are included in this study as part of the energy supply system 
for the modeled NZEB. The EV is modeled as a battery that can be connected to the 
home during certain hours of the day and certain days of the week. This study assumes 
that the vehicle is used to go to work between 9:00AM to 5:00PM, and is then 
connected to the building for the rest of the day. For modeling purposes, some 
specifications with respect to the EV in this study should be defined before starting the 
analysis, including EV battery capacity, state of charge, hourly EV charge (EV battery 
charging rate per hour), and other specifications as applicable.  

EV battery capacity is highly dependent on the characteristics of the vehicle, and can 
range from 19 kWh for a mid-sized sedan to 30 kWh for a full-sized SUV [273]. This 
study assumes that the lithium–ion batteries is used as described for a Nissan EV, the 
EV batteries of which are said to be able to store up to 24 kWh [274]. The hourly EV 
charge depends on the battery size, the charging level, and other important factors. 
Assuming an average vehicle range, it generally takes 4 to 8 hours for an EV battery to 
be fully charged [275], so the hourly EV charge in this study is assumed to range from 3 
kW/hr to 6 kW/hr.  

The electricity that can be transferred to the building from the EV battery and vice versa 
is highly dependent on the amount of electricity that is left in EV battery when it reaches 
home. In this analysis, the state-of-charge (SOC) variable is used to determine how 
much electricity is still in the EV battery when the EV returns home. The SOC when the 
vehicle returns home depends on the distance that the vehicle needs to travel to reach 
home, which in turn may vary depend on the specific characteristics of each region. 
This study therefore uses the average returning SOC value as a starting point, and 
different ranges are applied to the analysis afterward to see the effect of this parameter 
on the required electricity from the power grid. All of the EV-related data and 
assumptions used in this study are summarized in Table 7-4 below.  

 

 



 117

 

Table 7-4 Model Parameters 

Parameter  
Source 

Values & 
Ranges 

EV Battery Capacity (kWh) [273] 19-30 
Hourly EV Charge (kW/hr) [275] 3-6 
Solar Photovoltaic Production Incentive 
($/kWh) 

[276] 0.05 

Electricity to Grid Price ($/kWh) [277] 0.0757 

 
7.3 Power Distribution System  

The role of Building Energy Management Systems (BEMS) is becoming more significant 
as the importance of providing the necessary thermal comfort, visual comfort, and 
indoor air quality is receiving more attention, especially in situations where fossil fuel 
consumption, GHG emissions, and price fluctuations are major obstacles to meeting the 
need for an energy-efficient building [278]. While the concept of BEMS generally applies 
to controlling HVAC systems and determining the operation times in order to reduce 
energy consumption without compromising comfort [278], this study attempts to use this 
management tool to establish a connection between different energy sources within the 
building and determine the flow of electricity between the main battery, the EV battery, 
and the power grid. In a NZEB, different types of energy sources should be used in 
conjunction with each other and with the conventional power grid. This study assumes 
that all of the power generated through the solar panels and the electricity from the EV 
battery are stored in a main battery already designed for this purpose. However, the 
specific technological advancements to be used in such a power distribution system are 
beyond the scope of this study.  

This study attempts to develop an algorithm in which different energy sources interact 
with the grid in order to provide enough electricity to meet the energy demand of the 
building, while also transferring any surplus generated electricity to the grid and 
obtaining any additional required electricity from the grid during off-peak hours. In this 
algorithm (Figure 7.7), two possible situations are considered: 

a) The EV is connected to the building. In this case, the EV is considered as part of 
the energy supply system of the building. This study assumes that the vehicle is 
used to drive the owner to work every day at 9:00AM and then return home by 
5:00PM; during this time, the vehicle is therefore disconnected from the building. 
When the EV is connected to the building and is not fully charged, the algorithm 
checks whether or not the amount of onsite renewable generated electricity is 
greater than the amount of energy consumption for that specific hour of the day, in 
which case the excess amount of generated electricity is used to charge the 
connected EV. This process continues until the EV battery is fully charged.   

The next step is to see whether or not the main battery is fully charged. If not, then 
the onsite generated electricity is used to charge the main battery so that it can be 
used during on-peak hours, when the price of electricity is higher. After the EV 
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battery and the main battery are both fully charged, if there is still any excess of 
generated electricity, it is transferred to the grid. In all of these steps, the algorithm 
checks if the generated renewable electricity is enough to supply the energy usage 
of the building.  

If at any point the amount of onsite generated electricity is not enough to supply the 
energy demand of the building (especially during on-peak hours), then the system 
checks to see if there is any available electricity stored in the main battery. If there 
is, then the stored power in the main battery is used to power the building until it is 
fully depleted, after which the system checks if there is any electricity in the EV 
battery. Any stored power available in the EV battery is also used to power the 
building until the EV battery is also depleted, and if there is still insufficient power to 
meet the energy demand, then the remaining required electricity is taken from the 
grid.  

b) The EV is disconnected from the building. In this case, the main battery and the 
power grid are considered as the only available energy sources. Like in the previous 
scenario, the system checks to see whether or not the amount of electricity 
generated is greater than the energy consumption of the building. If not, then the 
system checks the main battery to see if there is enough electricity available in the 
main battery to power the building. If at any point the main battery is depleted, the 
power grid is used to provide the remaining electricity demand.  

If at any time the onsite generated electricity is greater than the energy consumption 
of the building, the excess of generated electricity stores in the main battery for use 
during on-peak hours. Once the main battery is fully charged, any remaining surplus 
energy transfers to the grid.  
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Figure 7.7 Power Distribution System Algorithm 

7.4 Time-Based Electricity Pricing   

Time-based electricity pricing is a pricing strategy in which power companies charge 
their customers extra for using electricity during certain time periods of the day (“on-
peak hours”) and offer credits to their customers who consume electricity during any 
other time period (“off-peak hours”). Utility companies have introduced this strategy to 
their customers to save money by reducing peak power demand [279]. For this purpose, 
a flat rate is applied to electricity consumption regardless of the time of usage, and then 
(depending on the usage hour and season) an extra charge is added to the total bill for 
using electricity during on-peak hours, while bonus credits are subtracted from the total 
bill for using electricity during off-peak hours [280]. Different electricity rates used in this 
study for different hours of the day are presented in Table 7-5 below for different 
seasons; in this study, these seasons have been separated into “summer” from April to 
October and “winter” from November to March. 
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Table 7-5 Hourly Electricity Pricing 

 Summer (April-
October) 

Winter (November-March) 

Flat rate ($/kWh) 0.0757 0.0757 
On-peak charge 
($/kWh) 

0.06124 0.03316 

Off-peak credit 
($/kWh) 

-0.01125 -0.01125 

 

7.5 Results and Discussion 

7.5.1 Energy Analysis Results 

The results of the energy analysis are summarized in Table 7-6, including the monthly 
energy consumption of each type of power usage within the building (lighting, heating, 
cooling, etc.), as well as different sources of energy and/or energy savings, such as 
heat gain through windows and power generated through solar panels. Different 
parameters affecting the energy consumption of the building (outside temperature, 
humidity, building envelope, occupancy, heat gain through interior and exterior 
windows, etc.) have also been considered in this analysis, while Table 7-7 also 
summarizes the temperature and dry-bulb temperature for each month of the year.  In 
Table 7-6, zone-sensible cooling and heating are defined as the sensible cooling and 
heating effect of any air introduced into the conditioned zone through the HVAC system 
[281]; for example, the heating effect of fans can be considered as a zone-sensible 
cooling load. Looking at Table 7-6, the results make sense in that, as the temperature 
increases from January to September (Table 7-7), the cooling load increases and 
reaches its maximum value in July, after which the temperature begins to decrease as 
the weather gets colder; although the month of February does not seem to follow this 
trend, this could be due to unusual weather conditions. The same trend can be seen in 
reverse for the heating load; as the number of cold days per month increases relative to 
the corresponding number of hot days, the heating load increases. The amount of 
electricity generated via the installed solar panels also can be tracked on a monthly 
basis (Table 7-6). This analysis shows that, as the number of sunny hours per day 
and/or the number of sunny days per month increase, the solar panels receive more 
sunlight and can therefore generate more and more electricity. This amount, as seen in 
Table 7-6, has an increasing trend until the end of July, after which it gradually starts to 
decrease until a sharp reduction us observed at the beginning of October. These 
differences in energy consumption trends are easily justifiable based on intuitive 
deductions from the surrounding environment. On the other hand, other contributors to 
the energy consumption of the building (room electricity, lighting and equipment 
components, etc.) have a nearly constant energy consumption rate with minimal 
variations during different months of the year, regardless of temperature changes or 
weather conditions.  
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Table 7-6 Energy Analysis Results  

Energy 
analysis 
results (kWh) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Room 
Electricity 

196.6 178.0 197.6 190.4 196.6 191.4 196.6 197.1 190.9 196.6 190.9 197.1 

Lighting 133.4 117.1 123.2 117.4 115.3 106.9 113.6 117.4 117.5 129.5 125.1 132.2 
Heating 
(Electricity) 

28.7 24.5 34.7 1.4 0.0 0.0 0.0 0.0 0.0 1.8 5.2 25.9 

Cooling 
(Electricity) 

22.5 13.1 26.3 134.9 303.6 433.1 661.3 510.0 386.2 245.8 36.4 17.3 

DHW 
(Electricity) 

89.0 80.4 89.0 86.2 89.0 86.2 89.0 89.0 86.2 89.0 86.2 89.0 

Generation 
(Electricity) 

1,280 1,010 1,797 2,302 2,509 2,119 2,336 2,298 2,221 1,441 1,446 1,305 

Computer + 
Equipment 

196.6 178.0 197.6 190.4 196.6 191.4 196.6 197.1 190.9 196.6 190.9 197.1 

Solar Gains 
Exterior 
Windows 

811 564 831 1,003 1,046 920 977 972 990 731 868 864 

Zone Sensible 
Heating 

57.4 49.0 69.4 2.7 0.0 0.0 0.0 0.0 0.0 3.5 10.4 51.8 

Zone Sensible 
Cooling 

51.5 29.5 59.5 312.9 675.1 941.3 1,392 1071 827.8 519.3 81.1 39.4 

 
Table 7-7 Temperature Data for Different Months of the Year 

Temperature Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Air temperature (C) 19 21 22 24 25 25 25 25 25 24 23 21 

Outside dry-bulb 
temperature (C) 

14 17 18 21 24 26 26 26 26 23 20 16.3 

 

Figure 7.8 is presented below to better understand the results of the energy analysis of 
the building in question. In this graph, the energy consumption and generation for 
different months of the year can be observed for a quick visual comparison. The most 
significant variations occur for cooling load and electricity generation through solar 
panels during different months of the year, because unlike many areas in the U.S., 
heating load does not contribute significantly to the energy consumption of the building. 
As seen in this graph, as the hotter days of the year approach, the cooling load begins 
to increase significantly, while the opposite trend can be seen in the heating load. 
Except for the colder days in December, January and February, the heating load then 
becomes insignificant for the rest of the year. All other components (room electricity, 
lighting, hot water, etc.) have a relatively steady rate of variation for different months of 
the year. The negative values in the graph indicate the electricity generated via solar 
panels, which decreases the overall daily energy consumption.  
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Figure 7.8 Daily Energy Consumption of The Building 

7.5.2 Electricity Consumption 

The hourly and cumulative rates of purchased electricity from the grid for the studied 
building are presented in Figures 7.9 and 7.10, respectively, each comparing the 
purchased electricity of the building with and without the integration of solar panels and 
the EV battery (“NZEB” and “conventional”, respectively).  

The purchased electricity drops significantly in the NZEB scenario compared to the 
conventional scenario, with the average hourly decrease in grid reliance being roughly 
61% year-round, while the most visible hourly decrease (93%) was in September. The 
gap in purchased electricity between the two scenarios is greatest during the summer 
due to increased solar power generation from longer sunny periods compared to other 
months of the year. From Figure 7.9, the overall year-round energy savings with the 
NZEB scenario is 66%.  
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Figure 7.9 Comparison of Hourly Energy Consumption of the Building for Conventional 
and NZEB Scenarios 

 

 

Figure 7.10 Comparison of Cumulative Energy Consumption of the Building for 
Conventional and NZEB Scenarios 

7.5.3 Electricity to Grid 

Any remaining excess amount of onsite generated electricity from the solar panels and 
from the stored electricity provided through the EV battery can be transferred to the 
power grid. Figure 7.11 presents the amount of electricity that can be transferred to the 
grid in different months of the year. The amount of electricity transferred to the grid in 
each month is highly dependent on the electricity consumption of the building, as well 
as the monthly electricity generation rate from the solar panels, so finding a constant 
trend in this case is not possible on a yearly basis. However, jumps in the amount of 
electricity transferred to the grid from month to month can be better understood by 
looking at the electricity consumption of the building (Figure 7.9) and the amount of 

0

200

400

600

800

1000

1200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

K
W
h

Month

Hourly electricity from Grid NZEB Hourly electricity from grid conventional

0

2000

4000

6000

8000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

K
W
h

Month

Cumulative electricity from Grid NZEB Cumulative electricity from grid conventional



 124

solar energy generated. In general, less electricity is transferred to the grid when the 
monthly energy consumption is higher and/or when the amount of generated solar 
energy is lower, in which case the main priority of the system is to supply the energy 
demand of the building first and then transfer any excess amount of generated energy 
to the grid. For example, the amount of electricity to grid is higher in September than 
October, November, or December, but looking at Figure 7.9 and comparing electricity 
consumption rate in September with those in each of the last three months of the year, 
this may sound confusing. This confusion may be clarified by following the trend of 
electricity generation and analyzing the solar energy generation in each of the latter 
months.  

 

Figure 7.11 Monthly Amount of Electricity Transferred to the Grid 

7.5.4 Price Comparison 

A very important incentive for a NZEB is the potential economic advantages of such a 
building, as a true NZEB would effectively reduce its utility bills to zero. In the process, it 
is also possible to earn money to compensate for the installation costs of solar panels 
and other technologies required for the NZEB. Calculations regarding the monetary 
value of energy in this study are divided into two parts. The first part investigates how 
much in savings may be possible by reducing the energy consumption of the building, 
assuming that no credit is given to the customer for selling electricity to the grid or for 
producing renewable energy from solar panels or other energy sources. In the second 
part, however, a production credit is provided to customers who generate solar energy 
and then sell the excess amount of onsite generated electricity to utility companies such 
as the Orlando Utility Commission (OUC) [276].  
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Figure 7.12 Monthly Electricity Bill Price Comparison  

The differences in conventional and NZEB electricity costs (with and without credits) are 
presented in Figure 7.12, where it becomes immediately clear how much can be saved 
in electricity costs with an NZEB. Many utility companies provide incentives for their 
customers to encourage the integration of renewable energy sources into their energy 
portfolios. Considering all of these credits together, the final electricity price for the 
NZEB in this study with all of the above-mentioned considerations and energy sources 
taken into account is shown in Figure 7.12. This graph shows that, when the 
aforementioned credits are taken into consideration, the net electricity price is negative 
throughout the year, meaning that customers can effectively pay nothing for electricity 
and can even earn money as a result.   

7.5.5 Sensitivity Analysis 

We demonstrate the effect of these parameters (more specifically, the main battery 
capacity and the SOC) on the required electricity from the power grid and on the 
transferred electricity to the grid, and then compares the results as appropriate. For this 
purpose, two maximum and minimum ranges and three median values for main battery 
capacity (10 kWh to 90 kWh) and SOC (0.1 to 0.9) are tested, and the results are 
presented in Figures 7.13 and 7.14. The values of the aforementioned parameters and 
the corresponding results are presented in Tables 7-8 and 7-9 for comparison.  
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Table 7-8 Required Electricity from the Grid for Different Values of SOC 

State of 
Charge Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0.1 95.8 487.4 767.2 693.8 841.3 776.8 851.1 619.8 106.6 160.5 13.9 41.8 

0.3 32.5 392.4 622.2 568.8 696.3 651.8 725.9 512.1 81.2 127.6 0.0 6.3 

0.5 17.7 325.7 497.2 443.8 551.3 526.8 609.4 422.1 66.2 37.6 0.0 0.0 

0.7 12.7 192.7 352.2 318.8 406.3 401.8 494.4 332.1 51.2 2.1 0.0 0.0 

0.9 7.7 90.3 203.6 194.8 262.0 278.5 380.0 242.1 36.2 0.0 0.0 0.0 
 

 

 

Figure 7.13 Electricity from the Grid for Different Ranges of SOC 

Table 7-9 Amount of Electricity Transferred to the Grid for Different Values of Main 
Battery Capacity   

Main 
battery 
capacity 
(kW) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

10 786.2 574.4 1,303 1,799 1,858 1,415 1,542 1,582 1,620 906.8 962.1 813.1 

30 353.4 278.7 771.9 1,233 1,248 845.3 943.2 970.2 1,071 426.7 573.9 387.6 

50 331.7 118.7 306.7 733.6 670.2 378.2 507.1 600.2 981.0 366.5 573.9 381.3 

70 311.7 66.6 25.0 281.5 165.6 37.5 175.3 338.6 908.0 354.4 573.9 381.3 

90 291.7 46.6 5.0 86.5 26.2 3.5 78.1 217.2 866.2 354.4 573.9 381.3 
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Figure 7.14 Electricity Transferred to the Grid with different ranges of main battery 
capacity. 

The graph above (Figure 7.14) shows that the lowest grid electricity demand is evident 
whenever the SOC is at its highest value. For instance, in January, the required 
electricity from grid is reduced by 92% as the SOC increases from 0.1 to 0.9, which 
shows how significant the effect of state of charge is on demand from the power grid. 
On a year-round basis, an average reduction of 80% in the required electricity from the 
grid is observed for the two maximum and minimum assigned values of SOC. This is 
because, based on the defined algorithm, after supplying the energy demand of the 
building and before storing any electricity in the main battery, the system stores the 
surplus onsite generated electricity in the EV battery. Having more electricity available 
in the EV battery when the vehicle returns home for the day means that less electricity 
can be stored in the EV battery afterward, meaning that more energy is available to be 
stored in the main battery and/or used to supply the energy demand of the building. The 
same rule also applies for the EV battery capacity; as the EV battery capacity increases, 
more electricity can be stored in the EV battery, and so more electricity is required from 
the grid to fully charge the EV battery. In other words, decreasing EV battery capacity 
has the same effect as increasing the state of charge.  

The results from Figure 7.14 match the stated expectations as well, in that more 
capacity to store the surplus onsite generated electricity can justify less transferred 
electricity to the grid. As seen in Figure 7.14, the highest amount of electricity supplied 
to the grid is observed when the capacity of the main battery is at its lowest value; 
hence, as the capacity of the main battery increases, the amount of electricity supplied 
to the grid decreases. For instance, as seen in Table 7-9 for the month of May, the 
observed reduction in electricity transferred to the grid is over 98%. On average, a 77% 
reduction in the amount of electricity transferred to the grid is observed for different 
months of the year as the main battery capacity increases from 10 kWh to 90 kWh. This 
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is understandable because, based on the algorithm used, fully recharging the main 
battery is given priority over transferring electricity to the grid.  

7.6 Conclusion 

This study investigated the role of electric vehicles and renewable energy sources (e.g. 
solar power) as potential featured in a net-zero-energy building (NZEB). The main parts 
of the system analyzed included solar panels for generating electricity, a main battery 
that interacts with these solar panels, an EV, and the main power grid. Using an 
inverter, the generated solar power was stored in the main battery, while the EV 
contributed to the overall system by providing electricity during on-peak hours and 
receiving electricity from the main battery and/or from the grid during off-peak hours. 
The mechanics of the system as a whole were based on a unique algorithm, which 
assigned the energy sources to be used in the NZEB during any given hour of the day. 
The results showed that, with the help of this system, it is possible to reduce the amount 
of electricity required from the grid by up to 68% on average. The monetary value of 
reducing this grid reliance was also evaluated, and showed that the resulting electricity 
bill can be reduced by up to 62% without considering any of the various incentives and 
credits offered by different utility companies and government organizations; when these 
credits and incentives are taken into account, the resulting overall savings can increase 
drastically to as much as 2.83 times on average (Figure 7.12). In fact, throughout the 
year, the net electricity price when credits are included is shown as a negative value, 
representing a net profit to customers from selling electricity to the grid. The relevant 
emission factor indicates that reducing 1 kWh of electricity consumption can reduce CO2 
emissions by 6.89551 × 10-4 metric tons [282], meaning that it is possible for this system 
to reduce overall GHG emissions by 3.56 metric tons by the end of any given year. 
From this perspective, the large-scale environmental impacts of reducing reliance on 
grid electricity can be significant.  

In the last phase of this analysis, a sensitivity analysis was performed to investigate the 
effect of the different modeled parameters (specifically the capacity of the main battery 
and the EV battery’s state-of-charge value) on the overall performance of the system. It 
is worth noting that this study was an attempt to apply V2H technology and solar power 
to a possible NZEB scenario; the results of this analysis showed that the net cost of 
electricity is negative by the end of the year, which can be interpreted as a net revenue 
for homeowners, but it should also be noted that having an energy-efficient building and 
installing solar panels can significantly increase the total capital cost. Even though the 
cost of solar panel installation has reduced noticeably in recent years, such costs 
should still be included in any complete life cycle cost analysis. Nevertheless, the 
significant reduction in electricity cost shows that this research can be used as a starting 
point for future efforts to design a NZEB. In the continuation of this study, efforts will be 
made to modify this algorithm and the applicable ranges for different variables to more 
adequately reflect regional differences, as each region of the U.S. has its own driving 
behaviors and weather patterns that can affect the energy consumption of a particular 
building. This study also attempted to discuss and present the potential feasibility of this 
system by developing an algorithm that can connect the different components of the 
system (the EV battery, the main battery, the power grid, and the building itself), 
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although investigating the life cycle cost of the building and the related technical aspects 
were both beyond the scope of this study. 

In future research, different pricing ranges will be also tested using an Agent Based 
Modeling (ABM) approach where, by applying different pricing scenarios, the life cycle 
cost of the system and the payback period will be simulated in a real-time analysis. 
Moreover, more focus will be given to a life cycle cost comparison between a standard 
code-compliant building and a NZEB by considering the payback period of increased 
costs incurred from making the system more energy-efficient and from the integration of 
photovoltaic solar panels into the building’s energy portfolio.  
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8.0 Socio-economic analysis of alternative fuel-powered Class 8 
heavy-duty trucks 

8.1 Introduction 

8.1.1 Overview 

Diesel-powered HDT technology has been the dominant fuel of choice for HDTs for 
decades, and HDTs on U.S. highways have likewise been highly dependent on fossil 
fuels [283]; a recent study by the American Transportation Research Institute (ATRI) 
showed that more than 92% of trucks currently run on fossil fuels [284]6. Furthermore, 
despite accounting for only approximately 1% of on-road vehicles in 2013 [285] and a 
relatively tiny share of the total national Vehicle Miles Travelled (VMT) at slightly over 
5% in 2013 [286], Class 8 HDTs consumed almost 29 billion gallons of fuel (17% of the 
total fuel consumption by highway vehicles) in 2013 [285]. Additionally, including 
distributed energy-related emissions, HDTs were responsible for almost the one-fourth 
of the U.S. transportation sector GHGs emissions in 2013 [287]. 
 
On one hand, the total global market share of hybrid-electric, plug-in-hybrid-electric, and 
battery-electric (BE) trucks were predicted to be 10 times larger by 2020 compared to 
2013 [288]. Furthermore, the U.S. Environmental Protection Agency (U.S. EPA) 
projected that 3% of U.S. HDTs would be electrified by 2025 [289]. On the other hand, 
the U.S. Energy Information Administration (EIA)'s (2014) forecasts estimate that the 
growth in the U.S. economy between 2013 and 2040 will cause an increase in diesel 
consumption with an annual average rate of 0.8% until 2040, with trucking responsible 
for a large share of this increase. Hence, emissions from HDTs are expected to 
substantially increase by 2040.  
 
This outlook with respect to the U.S. Class 8 HDTs raises significant concerns regarding 
the environmental and social impacts of such trucks [291]. Therefore, HDTs must be 
considered more thoroughly, taking into account the current status and future 
predictions related to the U.S. HDTs [292].  Furthermore, alternative fuel technology 
must be given special consideration for HDTs, and significant amount of upstream, 
downstream, and tailpipe emissions as well as high life-cycle costs (LCCs), including 
externalities. 
 

8.1.2 Objective of the Study 

Given the slow pace of alternative fuel technology adoption by HDTs in the U.S., as well 
as the relative infancy of some alternative fuel technologies such as BE HDTs, there 
has not been a sufficiently thorough comparison of conventional and alternative fuel-
                                                 
6 The contents of this section were partly published in Sen, B., Ercan, T., and Tatari, O. (2017). “Does a 
battery-electric truck make a difference? – Life cycle emissions, costs, and externality analysis of 
alternative fuel-powered Class 8 heavy-duty trucks in the United States.” Journal of Cleaner Production, 
Elsevier, 141, 110-121, 2015 IF: 4.959. DOI: 10.1016/j.jclepro.2016.09.046 
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powered HDTs in the U.S. with respect to their life-cycle emissions, costs, and 
externalities. 
 
This study attempts to fill this research gap by looking at alternative fuel-powered Class 
8 HDTs from a life-cycle perspective in order to support all of the efforts put into 
increasing sustainability of new HDT technologies. The alternative fuel types considered 
in this analysis are hybrid, CNG, biodiesel (B20 – powered by 20% biodiesel and 80% 
conventional diesel), and BE. Additionally, this study separates hybrid and BE trucks 
more specifically into mild hybrid and full hybrid trucks, and 270 kWh motors- and 400 
kWh motors-sizes, respectively. Therefore, these trucks are analyzed and compared 
separately. The alternative-fuel HDTs are all compared to conventional HDTs with 
respect to their life-cycle GHGs, costs, air pollutants emissions, and air pollution 
externalities (APE). The emissions considered in this study are CO2, CO, NOX, PM10, 
PM2.5, SO2, and VOC emissions. Furthermore, the objectives of this study specifically 
include making a regional analysis of the environmental impacts of BE HDTs operated 
in each of the U.S. NERC regions as defined by North American Electric Reliability 
Corporation (NERC). The life-cycle analysis carried out in this study includes the 
manufacturing and use phases. Additionally, this study analyzes the APE costs, and 
compares these costs with respect to each HDT. This study makes a significant 
additional contribution to the literature especially in two important ways; firstly, by 
comprehensively analyzing BE trucks based on regional electricity generation and price 
forecasts, and secondly, by incorporating the APE costs of these trucks’ lifecycle and 
tailpipe emissions into the analysis. 
 
8.2 Methods and Materials 

8.2.1 Hybrid Life-Cycle Assessment 

LCA is a well-known, well-established tool [293] to analyze the direct and indirect 
upstream and downstream environmental, social, and economic impacts of processes 
and products that previously could not be accounted for, using complementary impact 
assessment methods. Process-LCA coined by Haes et al. (2004) and EIO-LCA have 
recently become more widely used in academia and industrial practice [83,295]. For the 
analysis of this study, both EIO-LCA and process-LCA are hybridized to account for 
both the upstream and the downstream environmental impacts of HDTs. 
 
Almost all of the upstream environmental impacts are obtained using the Carnegie 
Mellon University Green Design Institute’s publicly available online EIO-LCA tool [296]. 
The EIO-LCA tool uses EIO tables based on transactions in 2002 (Noori et al., 2015).  
Downstream environmental impacts are obtained using the EIO model and a variety of 
process-based models and databases, such as the Greenhouse gases, Regulated 
Emissions, and Energy use in Transportation (GREET), Alternative Fuel Life-Cycle 
Environmental and Economic Transportation (AFLEET), and the U.S. EPA’s Motor 
Vehicle Emissions Simulator (MOVES). The EIO-LCA tool uses a linear model based on 
the EIO matrix developed by Leontief (1970). The monetary value of the product in 
question, in 2002 dollars, is used as input into the model embedded in the tool. The 
matrix used in this model consists of economic transactions between 428 sectors of the 
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U.S. economy. The North American Industry Classification System (NAICS) is used to 
categorize the data used in the model [298]. Hence, the input values needed to 
calculate the upstream life-cycle environmental impacts are the purchase prices of each 
HDT and, if any, those of their additional parts. As for the downstream emissions from 
fuel consumption during the use phase, the AFLEET and GREET models are used, 
both of which were developed by the Argonne National Laboratory. 
 
Since its introduction in the literature, the LCA tool has been widely used by many 
scientific fields, although the hybrid LCA has not yet been used as widely. Egilmez et al. 
(2013) and Egilmez et al. (2016) used the EIO-LCA method in order to assess the 
sustainability of 53 U.S. manufacturing sectors and 33 U.S. food manufacturing sectors, 
respectively. Using the EIO-LCA method, Kucukvar et al. (2014a) carried out an 
analysis with regard to the sustainability of U.S. consumption and investment activities. 
Similarly, Kucukvar et al. (2014) and Kucukvar et al. (2014b) incorporated the EIO-LCA 
method into their studies to assess the sustainability of different asphalt pavement 
systems. Onat et al. (2014b) identified sustainability hotspots of U.S. residential and 
commercial buildings throughout their lifecycle, using hybrid-LCA. Furthermore, Onat et 
al. (2014b) also analyzed carbon footprint of U.S. buildings, using the same method. 
Facanha and Horvath (2006) applied a hybrid LCA method to analyze air pollutant 
emissions from freight transportation in the U.S. Jiang et al. (2014) likewise conducted 
an EIO-based hybrid LCA study for the manufacturing of a diesel engine. Ercan and 
Tatari (2015) analyzed the life-cycle emissions, LCCs, and total water withdrawal rates 
for alternative fuel-powered transit buses in the U.S., while Zhao and Tatari (2015) 
performed a hybrid LCA of the vehicle-to-grid applications for LDVs.  
 

8.2.2 Monte Carlo Analysis 

HDTs have a wide range of configurations, and thus a wide variety of possible Life-
Cycle Inventory (LCI) components. Furthermore, the currently limited degree of 
deployment for alternative-fuel HDTs means that the number of available data points for 
such HDTs is limited. A probabilistic method should be integrated with the LCA methods 
in order to accommodate this uncertainty and the applicable value ranges. One such 
probabilistic method is the Monte Carlo method, which simulates point values with 
variable distributions, allowing the LCA analysis results to be presented within a range 
instead of being limited to only using average values [212,304,305]. The Monte Carlo 
simulation method is widely utilized in many scientific areas, and numerous examples of 
combining LCA with Monte Carlo uncertainty analyses are available from the literature 
[306–308]. Within the considered ranges, inputs are regenerated for one thousand 
iterations and linked with their corresponding hybrid-LCA components.    
 

8.2.3 Life-Cycle Inventory 

In the inventory analysis phase of a typical LCA, inputs to and outputs from a product 
system are quantified to assess the impacts in the next step. Process-LCA requires 
process-specific data inputs, while EIO-LCA requires the monetary values of products 
as inputs. The vehicle characteristics for the HDT considered in this study are presented 



 133

in Table 8-1. Based on the goal and scope of the study, the life-cycle assessment 
phases for this study are divided into two primary parts, as shown in Figure 8.1.  
 

 
Figure 8.1 System boundary for hybrid-life cycle assessment 

The baseline truck considered in the study is made of the essential components for a 
truck, including the truck’s body, shell, engine, other required miscellaneous parts, and 
a trailer. The purchase price for such a truck, given in Table 3, is converted to 2002 US 
dollars using the U.S. Bureau of Labor Statistics’ CPI Inflation Calculator, and used as 
an input to run the EIO model and obtain the environmental impact results from the 
relevant NAICS economic sector. The hybrid, CNG, and BE trucks each require 
additional parts during the manufacturing phases, and these additional parts come with 
additional costs to the baseline truck manufacturing. 
 

Table 8-1 Vehicle characteristics and battery specifications 

Characteristics Value Source 
Lifetime 6.6 – 10 years [309,310] 
Average annual mileage 109,226 – 170,000 miles [310,311] 
Physical features Class 8 heavy-duty trucks 

with 53’ truck-trailer; 
>33,001 lbs. 

[312] 

Battery specifications (BE) 270kWh, 400kWh, 
150Wh/kg, Li-ion batteries 

[313] 

Battery specifications 
(Hybrid) 

5 kWh, 25 kWh, 
150Wh/kg, Li-ion batteries 

[314] 
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According to the California Air Resources Board (2015), BE trucks additionally require 
power electronics, an electric motor, and battery system. Likewise, CNG trucks require 
the installation of a metal tank and a heavy gauge [315]. For battery system 
manufacturing, the GREET tool’s Vehicle-Cycle Model is used to calculate the 
environmental impacts of battery manufacturing based on the battery specifications. 
 
CNG and BE trucks also necessitate refueling/recharging stations. The U.S. 
Department of Energy estimates the cost of a natural gas refueling station (NGRS) with 
the daily supply capacity of 1,500-2,000 gasoline-gallon-equivalents of fuel to range 
between $911,901.87 and $1,367,852.80 (both in 2002 dollars) [316]. As in Ercan and 
Tatari's (2015) study, it is assumed that 45.75%, 39%, and 15.25% of the total cost of a 
unit of NGRS consists of investment, labor, and installation costs for miscellaneous 
electrical equipment installed in the NGRS, respectively. The relevant NAICS sectors for 
the environmental impacts of the CNG refueling infrastructure are given in Table 8-2. 
Based on De Filippo et al.'s (2014) study as well as a report by the NREL (2012), 
charging stations used for HDTs are assumed to adopt conductive charging technique.  
Therefore, like in Ercan and Tatari's (2015) study, and also based on additional cost 
information from Proterra, this study assumes that BE HDTs are charged using Level 3 
charging stations, each with a charging capacity of 250 kW. Also, it is assumed based 
on Kempton et al. (2001) that each charging station has an efficiency of 90%. It is 
assumed that the existing diesel infrastructure is suitable to refuel hybrid and B20 
trucks. 
 
In this study, the load-specific fuel economy (LSFE) is taken into account, thereby 
assuming that a truck’s fuel economy decreases by 1% for each 1,000-lb increase in 
payload [314]. The truck fuel economy values are assumed to be for trucks with empty 
trailers, and that the maximum payload capacity of truck-trailers is 54,000 lbs. [314]. 
Based on these assumptions, the fuel economies of each truck type relative to their 
payload is first calculated in decreasing order, and the resultant fuel economies are 
normally distributed for each truck type. The load-specific fuel consumption of each type 
of truck is then randomized based on the relevant statistical parameters (mean, 
standard deviation, etc.). To calculate the environmental impacts of biodiesel 
production, the emissions produced by per gallon of B20 are taken from the GREET 
tool’s process-LCA model. 
 
Changing diesel prices are also reflected in this analysis, as are the various 
environmental impacts of regional electricity production and electricity prices. Based on 
a study by the EIA (2015), it is assumed that diesel prices follow a steady 30% increase 
from 2015 to 2025. Additionally, the MOVES analysis results for HDTs indicate that 
tailpipe emissions deteriorate over the HDT lifetime for each emission type. These 
deterioration factors are thus considered in the analysis, and the values of these factors 
for the overall impacts and costs of tailpipe emissions are taken from the AFLEET 
database. 
 
As for battery manufacturing and replacement, it is assumed that the lithium-ion 
batteries are used in BE and hybrid HDTs, based on Transportation Research Board 
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(2010). This study used the same approach as Zhao et al. (2013), and assumed that the 
battery of a hybrid truck lasts for 3 years. Therefore, a hybrid truck replaces its battery 2 
or 3 times during its entire lifespan, depending on its average lifetime, which is 
randomized between 6.6 and 10 years. It is also assumed, based on a study by 
Ozdemir (2012), that BE truck batteries are replaced approximately every 4 years. The 
GREET tool’s Vehicle-Cycle Model is used to obtain the emissions from battery 
replacement. The future projections of battery price declines are reflected, applying a 
2% annual inflation rate to this initial battery price, based on data from the EIA (2015). 
With regard to the maintenance and repair of trucks, it is possible to assume based on 
the NREL (2012), that hybrid and BE trucks have lower M&R costs than conventional 
trucks, because conventional trucks have more fluids to change and far more moving 
parts. Based on M&R cost and relevant NAICS Sector data for each of the studied truck 
types, given in Table 8-1, the environmental impacts of M&R activities are calculated, 
using the applicable M&R LCCs as inputs in the EIO-LCA tool. The details of the 
specific data for each of the aforementioned tools as applicable to each relevant part 
are given in Table 8-2. 
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Table 8-2 Inputs for hybrid life-cycle assessment 

Vehicle 
technolo
gy 

LCA component Cost 
(2015$) 

EIO-LCA 
tool 
NAICS 
sector 

Process-
LCA data 

Source 

Commo
n for all 
types of 
trucks 

Truck manufacturing 
 
 
Trailer manufacturing 

$107,362 
 
 
$32,500 

#336120 
 
 
#336212 

n.a. 
 
 
n.a. 

[313] 
[322] 

Diesel Diesel fuel production $1,030,445 #324110 n.a. [323] 
Maintenance $224,873 #81111 n.a. [315] 

Biodiese
l (B20) 

Biodiesel fuel 
production 

$867,976 #324110 GREET’s 
biodiesel 
production   

[315,32
3] 

Maintenance $223,020 #81111 n.a. [315] 
CNG Natural gas 

manufacturing 
$855,785 #325120 n.a.  

Metal tank, Heavy 
gauge manufacturing 

$60,495 #332420 n.a. [315] 

Infrastructure $58,278 #332420, 
#237100, 
#335999 

n.a. [316] 

Maintenance $224,873 #81111 n.a. [315] 
Hybrid 
 

Diesel fuel 
production  

Mild 
 

$757,262  
#324110 

 
n.a. 

[323] 

Full $803,928 

Battery 
system 
manufactur
ing 

Mild 
 

$3,000 n.a. GREET’s 
Battery 
Model 
based on 
specificati
ons on 
Table 1. 

[314,31
5] 

Full $15,000 

Battery 
replaceme
nt 

Mild $4,960 n.a. 

Full 
 

$24,802 

Maintenance $211,314 #81111 n.a. [315] 
BE Power generation $380,211 #221110 n.a. [313] 

Battery 
system 
manufactur
ing 

270kWh $162,000 n.a. GREET’s 
Battery 
Model 
based on 
Table 1. 

[313,31
5] 

400kWh $240,000 

Battery 
replaceme
nt 

270kWh $160,885 n.a. GREET’s 
Battery 
Model 
based on 
Table 1. 

[313,31
5] 400kWh $238,350 

Motor $9,290  
#335212 

 
n.a. 

[313] 
Power electronics $12, 388 
Maintenance $202,715 #81111 n.a. [315] 
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8.2.3.1 Regional Electricity Generation and Prices 

A regional approach is used to evaluate electricity generation-related environmental 
impacts of BE trucks. More specifically, this study uses the North American Electric 
Reliability Corporation (NERC) regions for further analysis, as listed below: 

1. Texas Regional Entity – TRE 
2. Florida Reliability Coordinating Council – FRCC 
3. Midwest Reliability Organization – MRO 
4. Northeast Power Coordinating Council – NPCC 
5. Reliability First Corporation – RFC 
6. SERC Reliability Corporation – SERC 
7. Southwest Power Pool – SPP 
8. Western Electricity Coordinating Council - WECC 

Similarly, the regional variations in electricity generation and prices are also considered 
in the fuel-LCCs of BE trucks. based on data from the EVRO tool (Noori, 2015; Noori et 
al., 2015a). To account for electricity price projections, the commercial electricity rate is 
assumed to be equal to the levelized cost of electricity. More detailed information on 
regional electricity prices and on the environmental impacts of power generation can be 
found in Ercan et al.'s (2016) study. 
 
8.2.3.2 APE Costs 

A few studies have included the externalities from vehicles’ emissions during operation 
[66,193,325]. In general, the operation and maintenance costs calculations for trucks 
typically do not include these externalities [326]. With this in mind, the externality costs 
considered in this study are estimated based on the APEEP model by Muller and 
Mendelsohn (2007b) and Michalek et al. (2011)’s model of the adoption of electric 
vehicles. 
 
APE costs of electricity generation are accounted for to cover the total externality costs 
of BE trucks. The energy consumption of a CNG truck was calculated to be 0.028 
GJ/mile, and the total APE costs of natural gas are obtained based on this value. 
Regarding the externality costs of fuel consumption for conventional, hybrid, and B20 
trucks, the APE costs provided for diesel production (in $/ton) are used. APE costs 
related to manufacturing (including batteries) and maintenance are considered within 
the same category, and are likewise applied to each truck type on a dollar-per-ton basis. 
Finally, the APE costs of tailpipe emissions are obtained for each type of truck on a 
dollar-per-ton basis, except for BE trucks. 
 
8.3 Results 

8.3.1 Life-Cycle Cost (LCC) Analysis Results 

The use phase is the main driver of the LCCs of HDTs. As shown in Figure 8.2, BE and 
mild-hybrid trucks have the best overall performances out of all of the considered truck 
types in terms of their LCC impacts. The dominant contributor to the LCCs of all types of 
HDTs is the cost of fuel consumption followed by their M&R costs, except for BE HDTs. 
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Although there is a slight difference between the LCCs of conventional and CNG trucks, 
there is a noticeable difference between the fuel-LCCs of these two truck types. The 
fuel-consumption cost of a B20 truck is slightly higher than that of a CNG truck; 
however, a B20 truck performs better overall in terms of economic impacts. 
 

 
Figure 8.2 Life cycle costs of heavy-duty trucks 

Unlike Lajunen's (2014) study, which found hybrid buses to be performing almost the 
same as diesel city bus with respect to LCCs, the results indicate that hybrid trucks may 
have moderately less LCCs than conventional trucks, and favor the hybrid configuration 
for trucks. Individual fuel-LCCs and battery replacement costs were the two primary 
differences in the respective LCCs of both hybrid truck types. The fuel economy of mild-
hybrid trucks is considered to be better than that of full-hybrid trucks, resulting in lower 
fuel-LCCs for mild-hybrid trucks. For BE HDTs, additional part manufacturing was found 
to be the second largest driver of the LCCs of BE HDTs. The greatest portion of these 
incremental costs of BE HDTs stems from battery system manufacturing. 
 
An important portion of the LCCs of trucks comes from M&R activities, with conventional 
trucks being costlier, as expected. Overall, the M&R LCCs of BE trucks are the lowest 
out of all truck types, which is consistent with the findings from the NREL (2012), which 
clearly highlights the lower maintenance requirements of battery-electric vehicles due to 
fewer fluids to change and fewer moving parts in such vehicles. 
 

8.3.2 Environmental Emissions Results 

Fuel consumption and tailpipe emissions are the predominant contributors to total life-
cycle GHGs emissions, to the point where all other factors are practically negligible. 
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Overall, CNG trucks produced the largest amount of lifetime GHGs emissions compared 
to other trucks, with BE trucks emitting the least amount of GHGs emissions at 53% 
less than the GHGs emissions of CNG trucks. Like in the LCCs results, fuel 
consumption played a major role in the total amount of GHGs emissions from each 
truck type. In terms of GHGs emissions from fuel consumption, mild-hybrid trucks were 
found to outperform full-hybrid trucks and CNG-powered trucks by more than 6 percent 
and 121 percent, respectively, due to their better fuel economy. 
 

 
Figure 8.3 Life-cycle greenhouse gas emissions of heavy-duty trucks 

Unlike Sharma et al.'s (2013) study, in which BE passenger vehicles were found to have 
higher life-cycle CO2 emissions than diesel-fueled passenger vehicles, the results of this 
study found that BE trucks performed better (albeit slightly) than conventional trucks in 
terms of life-cycle GHGs emissions. An immense amount of GHGs emissions from 
electricity generation negated the zero-tailpipe emission advantage of BE HDTs. In fact, 
the amount of GHGs emissions from electricity generation from BE trucks are 70 
percent and almost 5 percent greater, compared to the two largest GHGs emitters out of 
the considered truck types (conventional and CNG trucks), respectively. 
 
Similarly, conventional and CNG trucks yielded the greatest amounts of air pollutant 
emissions compared to other trucks, as shown in Figure 8.4. Air pollutants emissions 
from CNG trucks are twice as much as those from conventional trucks. This is 
consistent with the findings in Tong et al.'s (2015) study, which also found that CNG 
trucks did not yield any emission improvements compared to diesel trucks. The main 
driver of this significant difference is CO emissions, which accounts for 68% of the 
tailpipe emissions from CNG trucks. NOx and SOx emissions are also significant 
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contributors to total air pollutants emissions, largely due to fuel consumption and tailpipe 
emissions. Natural gas manufacturing is the biggest contributor to SOx emissions, 
followed by electricity generation and diesel manufacturing. Mild-hybrid trucks had the 
lowest SOx emissions at nearly 90 percent less than those of CNG trucks. 
 

 
Figure 8.4 Life-cycle air pollutants emissions of heavy-duty trucks 

From a life-cycle perspective, biodiesel-fueled trucks cause almost as much PM, CO, 
VOC, and NOx emissions as do diesel-fueled trucks. The main reason behind the 
difference between these emissions produced by biodiesel trucks and diesel trucks is 
that the emissions from maintenance and repair, fuel consumption, and tailpipe of 
biodiesel trucks are slightly less than diesel trucks. The emission factors for Heavy Duty 
Vehicle Manufacturing, Trailer Manufacturing, and Tailpipe Emissions are the same for 
both types of trucks. 
 

8.3.3 APE Cost Results 

Compared to the baseline truck, all of the alternative fuel-powered truck types, except 
CNG trucks, performed better with respect to APE LCCs. As expected, fuel 
consumption and tailpipe emissions are the two main contributors to APE LCCs, 
respectively yielding the largest and second-largest APE damages out of all of the 
analyzed modules. According to the results presented in Figure 8.5, the life-cycle 
externalities for each HDT type (except for BE trucks) ranged between $280,000 and 
$340,000 (in 2015 dollars), with GHGs and SOx emissions as the main drivers of APE 
LCCs for such trucks. 
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Contrary to Michalek et al. (2011) results regarding BE vehicles’ APE costs, the results 
of this study show that BE trucks significantly outperformed all other truck types in spite 
of the U.S. electricity generation sector’s high dependency on fossil fuels. This is mainly 
because of that BE trucks have no tailpipe emissions, thereby eliminating one of the two 
main drivers of APE costs. This result is consistent with Feng and Figliozzi's (2013) 
study in that BE trucks are found to be more competitive when indirect costs are taken 
into account. On the other hand, CNG trucks are found to have the highest overall APE 
costs, with BE trucks’ APE LCCs at 85% less than those of CNG trucks. 
 
The life-cycle fuel consumption related APE costs of alternative-fuel trucks ranged 
between $140,000 and $160,000 (in 2015 dollars). Hybridization and electrification of 
trucks lowered the APE LCCs by 36% and 20% compared to conventional trucks, 
respectively. This is fact due on a large extent to several factors, including a projected 
increase in diesel prices over the lifetime of a truck, hybrid trucks’ (especially mild-
hybrid) relatively improved fuel economy, and a predicted decrease in electricity prices. 
Conventional, B20, and hybrid trucks all produced nearly the same amount of APE 
costs from tailpipe emissions, mainly because these trucks still run largely on diesel 
fuel, and because the tailpipe emission values collected from AFLEET and the tailpipe-
related APE cost values collected from APEEP for these trucks are identical. In terms of 
damages from tailpipe emissions, CNG trucks incurred 22% higher APE costs than 
conventional trucks, largely because of the additional APE costs from tailpipe CO 
emissions from CNG trucks, as well as the higher SOx emissions from natural gas 
manufacturing. 

 
 

Figure 8.5 Life-cycle air pollution externalities 
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8.3.4 Cost and GHG Emissions Results for Regional Electricity 
Consumption  

The regional analysis for BE HDTs is based only on the electricity consumption of such 
vehicles, which varies significantly among regions. Special emphasis is placed on 
electricity generation, and thus fuel consumption, taking into account the regional 
differences in life-cycle emissions and costs. Although BE trucks generally produced 
lower amounts of GHGs emissions than all other truck types, electricity generation 
alone was still responsible for a considerable amount of GHGs emissions. The results 
for BE trucks are based on a national average of the regional electricity grid mixes 
calculated based on NERC regions, but it must not be forgotten that different regions 
made varying contributions to this average. With respect to regional GHGs emissions 
from fuel consumption, the NPCC region produced substantially less emissions than 
other regions. The NPCC region’s emissions from electricity generation were found to 
be 106% less than those of the SPP region. This difference is so significant that, if BE 
trucks nationwide are to be charged using the electricity grid mix of NPCC region, the 
fuel-consumption-related GHGs emissions of these trucks would decrease by over 70%, 
and overall GHGs emissions would decrease by over 63%. As previously noted in 
Ercan and Tatari's (2015) study, this is due in large part to the relatively small share of 
coal use in the electricity grid mix of the NPCC region. 

 
Figure 8.6 Regional electricity-consumption-related greenhouse gas emissions for 400 

kWh electricity 

Another significant impact driven largely by fuel consumption is the overall LCCs. That 
said, with respect to the LCCs of electricity-generation-related activities, though not as 
vastly different from region to region as GHGs emissions are, the differences in LCCs 
are still considerable. The electricity grid mix of the SERC region is found to have the 
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greatest fuel-LCCs for BE trucks at almost 30% higher than the LCCs for the U.S. 
national average grid mix. On the other hand, it is seen that the use of the electricity grid 
mix in the NPCC region would improve the fuel-LCCs of BE trucks by 12% compared to 
the U.S. national average grid mix. 

 
Figure 8.7 Regional life cycle cost of electricity for 400 kWh electricity 

8.4 Conclusions and Discussions 

The study presents a holistic analysis and comparison of the life-cycle emissions and 
costs, and air pollution externality costs of different types of alternative-fuel Class 8 
heavy-duty truck-trailers. The alternative fuels analyzed in this study were biodiesel 
(B20), compressed natural gas (CNG), hybrid (mild and full), and battery electric 
(270kWh and 400kWh), with special attention to BE HDTs as an emerging technology, 
the life-cycle performance of which (as this study also shows) is heavily dependent on 
electricity-generation-related activities. The dynamism of the changing circumstances of 
trucks, i.e. account the estimated projections for future diesel and electricity prices and 
the effect of payload on the fuel economy of a truck, and the effect of tailpipe emissions 
deterioration factors, throughout their lifetimes are also reflected in this study.  
To the authors’ knowledge, this study has been the first comprehensive study that, in 
addition to life-cycle assessment for alternative fuel-powered HDTs, accounted for air 
pollution externalities in the form of APE costs incurred from the life-cycle of a truck. 
The inclusion of APE costs for different HDTs in a life-cycle assessment is an important 
feature in this study and a significant contribution to current literature. Another important 
feature of this study is the inclusion of a specific analysis and comparison of BE trucks 
based on the regional differences in electricity grid mixes and in the cost of electricity. 
Major differences have been observed between different NERC regions with respect to 
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the emissions and costs from electricity generation. This study concludes that, if BE 
trucks are to be charged using the NPCC region’s electricity grid mix, which only 
contains slightly over 10% of coal, the fuel consumption related emissions and life-cycle 
fuel costs of BE trucks could improve by over 70% and by over 63%, respectively. This 
important finding means that removing coal from the U.S. national electricity grid mix (or 
at least substantially reducing it by as much as possible) would achieve considerable 
emission reductions from the road transportation sector. 
 
As expected, battery-electric HDTs outperformed all other truck types overall, despite 
having the greatest incremental costs and producing the largest amount of GHGs 
emissions due to the current use of the U.S. national grid mix. However, in an 
unexpected finding from this study, CNG trucks performed worse overall than the 
baseline truck considered in this study, mainly due to additional emissions for CNG 
trucks from CNG fuel production, additional infrastructure needs, and tailpipe emissions, 
as well as the underperforming fuel economy of CNG trucks which, in turn, increases 
CNG fuel production and consumption even further. This study therefore confirms that 
the fuel economy (the total miles driven per diesel-equivalent gallon of fuel) is very 
important for any emerging truck technology to improve the economic and 
environmental performances of HDTs. In light of the fact that trucks have the highest 
VMT among all on-road vehicles, improvements in truck fuel economy can therefore 
lead to greater benefits with regard to their total impacts, as fuel economy has a direct 
influence on both fuel consumption and tailpipe emissions, which are the two dominant 
drivers of all of the impacts analyzed in this study. 
 
Overall, it can be concluded that BE trucks are a very promising truck alternative for 
sustainable trucking and road transportation, and that their substantial air quality 
improvements would, in turn, greatly improve environmental and human health 
nationwide. This holds true providing that electricity used to charge a BE truck is 
generated from renewable energy sources, which produce far lower life-cycle 
environmental impacts than fossil fuel-based generation. It should be kept in mind that, 
once the incremental costs of BE HDTs are decreased thanks to future technological 
advancements, BE HDTs would substantially outcompete all other HDT types. This 
study also shows that CNG trucks did not significantly improve either life-cycle 
emissions or costs compared to their conventional counterparts. Hence, the authors 
suggest that future policy efforts be directed primarily toward advancing BE HDTs as an 
emerging technology as opposed to HDTs with other alternative fuel sources.  
 
EIO-LCA model used in this study is based on matrixes of transactions between sectors 
of a single country. The use of single-region I-O model leads to the fact that the impacts 
that are embedded in the domestic trade are better reflected in the results of this study. 
However, as also mentioned by Hertwich and Peters (2009), Kucukvar and Samadi 
(2015), Kucukvar et al. (2016, 2015), and Zhao et al. (2016), environmental impacts of 
production at global scale can be obtained through Multi Region Input-Output (MRIO) 
model. Therefore, a future study can extend the scope of this study including the 
environmental impacts of U.S. HDTs embedded in international trade using MRIO 
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model as a complementary method in order to see the role of economic globalization, 
and minimize related uncertainties. 
 
As observed during the literature review, the data regarding BE trucks is currently more 
limited than that of other alternative-fuel HDTs. For example, specific data on 
recharging infrastructure for BE HDTs could not be found, and was therefore assumed 
to be the same as that for BE bus charging infrastructure. Hence, it must be noted that 
the charging infrastructure for BE trucks may not be convenient for the extensive 
operation of long-haul trucks, so the deployment of BE trucks should consider charging 
infrastructure investments for DC charging.  Moreover, the lack of data on APE costs 
per gram of emissions from electricity generation meant that the authors could not 
compare the APE costs of BE trucks on a regional basis. As more data on BE HDTs 
becomes available, future studies can focus specifically on the overall performance of 
BE trucks fueled with electricity generated from different renewable energy sources, and 
a scenario analysis in this regard can be carried out on a regional basis. Furthermore, 
future studies can focus on battery technology, specifically with respect to battery 
chemistry, by analyzing and comparing how each of the different types of battery 
chemistry can influence the performance of BE HDTs. However, despite these 
limitations, it can still be concluded that BE technology has a great deal of potential for 
significant economic, environmental, and social improvements to the transportation 
sector. 
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